AI:259-全新YOLOv8改进策略 | 基于MSDA多尺度空洞注意力机制的优化与实现

空洞卷积是一种用于扩大感受野而不增加计算量的卷积操作。通过在卷积核的权重之间引入空洞(即间隔),空洞卷积能够捕捉更大范围的信息,同时保持计算效率。空洞卷积的公式为:其中,(r)是空洞率,控制了感受野的大小。...

AI:250-YOLOv8结合ShuffleNetV2的轻量级优化与实战指南(附代码+修改教程)

ShuffleNetV2是一种通过分组卷积(GroupConvolution)和通道洗牌(ChannelShuffle)技术来减少计算量和内存访问成本的轻量级网络。分组卷积:通过减少卷积核的计算量来降低整体的计算复杂度。通道洗牌:通...

RKNN3588——YOLOv8的PT模型转RKNN模型

1.首先克隆rknn修改后的ultralytics版本项目到本地主要是修改了源码的ultralytics/nn/modules/head.py和ultralytics/engine/exporter.py两个文...

AI:252-通过HAttention模块改进YOLOv8 | 超分辨率重建助力小目标检测

YOLOv8继承了YOLO系列的核心思想,即通过单次前向传播同时完成分类和定位任务。它的模型架构进一步优化了CSPDarknet作为骨干网络,并在此基础上引入了多尺度特征融合和改进的损失函数。然而,这些改进仍未能完全...

AI:257-RevColV1 | 基于可逆列网络的YOLOv8小目标检测改进【附保姆级代码】

RevColV1的引入显著提高了YOLOv8在小目标检测任务中的性能。虽然模型的计算开销略有增加,但相较于其带来的性能提升,这种增加是值得的。RevColV1通过特征解耦和列网络设计有效地提升了模型对小目标的检测能力。...

AI:234-提升YOLOv8性能 | 集成TripletAttention三重注意力机制的详解与实践

本文介绍了如何将TripletAttention注意力机制集成到YOLOv8中,并详细讲解了集成的原理、实现步骤、代码示例以及模型部署与应用的细节。通过引入TripletAttention机制,我们能够显著提升YOLOv8在目标检测任务...

AI:245-YOLOv8的全新改进 | 基于Damo-YOLO的RepGFPN在Neck中的特征融合优化【极限涨点】

YOLOv8在结构上依旧延续了自YOLOv4以来的CSPNet(CrossStagePartialNetwork)和FPN(FeaturePyramidNetwork)的设计,结合了PANet(PathAggregation...

AI:255-利用SENetV2改进YOLOv8网络结构 | 全网首发改进与性能分析

YOLOv8是YOLO系列中的最新版本,其主要改进包括更深的网络结构、更高效的特征提取、更准确的目标定位等。YOLOv8通过优化特征金字塔网络(FPN)和改进的锚点机制,在多个标准数据集上表现出色。然而,尽管如此,Y...

AI:254-YOLOv8改进 | 基于MobileNetV2的轻量化Backbone替换与性能评估

深度可分离卷积:将标准卷积分解为深度卷积和逐点卷积,大幅降低计算复杂度。线性瓶颈:使用线性激活函数而非ReLU,在瓶颈层的输入和输出之间避免了非线性变换。反向残差块:在网络中引入反向残差模块,改善了特征的流动和信息传递。首先,我们需要定...

AI:238-提升YOLOv8的检测性能 | Slim-Neck特征融合层的轻量化与精度双重突破(保姆级涨点)

从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~...