私有化部署 Dify 并快速搭建 AI 应用

程序员羊羊 2024-07-30 08:01:01 阅读 53

Dify介绍

Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。以下是其核心功能列表:

1. 工作流: 在画布上构建和测试功能强大的 AI 工作流程,利用以下所有功能以及更多功能。

2. 全面的模型支持: 与数百种专有/开源 LLMs 以及数十种推理提供商和自托管解决方案无缝集成,涵盖 GPT、Mistral、Llama3 以及任何与 OpenAI API 兼容的模型。完整的支持模型提供商列表可在此处[1]找到。

图片

3. Prompt IDE: 用于制作提示、比较模型性能以及向基于聊天的应用程序添加其他功能(如文本转语音)的直观界面。

4. RAG Pipeline: 广泛的 RAG 功能,涵盖从文档摄入到检索的所有内容,支持从 PDF、PPT 和其他常见文档格式中提取文本的开箱即用的支持。

5. Agent 智能体: 您可以基于 LLM 函数调用或 ReAct 定义 Agent,并为 Agent 添加预构建或自定义工具。Dify 为 AI Agent 提供了50多种内置工具,如谷歌搜索、DELL·E、Stable Diffusion 和 WolframAlpha 等。

6. LLMOps: 随时间监视和分析应用程序日志和性能。您可以根据生产数据和标注持续改进提示、数据集和模型。

7. 后端即服务: 所有 Dify 的功能都带有相应的 API,因此您可以轻松地将 Dify 集成到自己的业务逻辑中。

Dify架构图如下:

图片

功能比较

功能 Dify.AI LangChain Flowise OpenAI Assistant API
编程方法 API + 应用程序导向 Python 代码 应用程序导向 API 导向
支持的 LLMs 丰富多样 丰富多样 丰富多样 仅限 OpenAI
RAG引擎
Agent
工作流
可观测性
企业功能(SSO/访问控制)
本地部署

系统要求

CPU >= 2 Core

RAM >= 4GB

如果你是MacOS系统的话,可以参考之前的文章准备一下本地的云环境:打造高效MacOS系统环境

本地部署

为了方便本地快速验证,这里使用Docker Compose 运行。在企业或者生产环境建议采用 K8S环境部署,Dify 依赖较多的中间件,如:weaviate、redis、postgres 等,这些中间件可以采用外部已部署的应用或者容器部署,但是需要注意数据的存储。

Docker Compose 部署

克隆Dify项目并运行:

在这里插入图片描述

如果官方脚本运行不起来,可以参考我调整后的Github脚本:

在这里插入图片描述

K8S 部署

使用Helm Chart 部署,在K8S环境部署Dify:

在这里插入图片描述

部署验证

使用浏览器打开如下地址:

http://localhost:8090/install

注意官方的是80端口,因为80端口本地被占用,所以调整成8090端口。

查看本地存储:

在这里插入图片描述

这样可以随时本地关闭和启动 Dify App,数据并不会丢失。

注册管理员账号:

图片

登陆成功首页:

图片

快速构建应用

先添加模型:chatgpt以及ollama模型

在这里插入图片描述

完成模型添加后:

图片

使用模板快速使用创建一个 Code Interpreter ChatBot 应用,先使用gpt-3.5-turbo 模型进行提问:

图片

再切换到本地模型 ollama3:8b 提问:

图片

添加知识库

选择本地数据源,支持非常多的文件格式,如:TXT、Markdown、PDF等。

图片

文档分段和清洗:

图片

存储到向量数据库:

图片

基于知识库新建应用:

图片

这次使用共新建了两个应用:

图片

写在最后

Dify 可以切换几乎所有主流的模型,通过模板可以快速创建应用,添加各种类型的文档作为知识库,添加后端API等,相较于 LangChain 需要通过 Python 代码进行开发,Dify 开箱即用,对于大部分人来说更加的友好,最重要的可以进行私有化部署。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。