LangChain-10(2) 加餐 编写Agent获取本地Docker运行情况 无技术含量只是思路
CSDN 2024-09-15 08:07:01 阅读 83
可以先查看 上一节内容,会对本节有更好的理解。
安装依赖
<code>pip install langchainhub
编写代码
核心代码
@tool
def get_docker_info(docker_name: str) -> str:
"""Get information about a docker pod container info."""
result = subprocess.run(['docker', 'inspect', str(docker_name)], capture_output=True, text=True)
return result.stdout
这里是通过执行 Shell的方式来获取状态的。
通过执行Docker
指令之后,可以获取到一大段的文本内容,此时把这些内容交给大模型去处理,大模型对内容进行提取和推理,最终回答我们。
注意@tool注解,没有这个注解的话,无法使用
注意要写"""xxx""" 要写明该工具的介绍,大模型将根据介绍来选择是否调用
如果3.5的效果不好,可以尝试使用4
from langchain import hub
from langchain.agents import AgentExecutor, tool
from langchain.agents.output_parsers import XMLAgentOutputParser
from langchain_openai import ChatOpenAI
import subprocess
model = ChatOpenAI(
model="gpt-3.5-turbo",code>
)
@tool
def search(query: str) -> str:
"""Search things about current events."""
return "32 degrees"
@tool
def get_docker_info(docker_name: str) -> str:
"""Get information about a docker pod container info."""
result = subprocess.run(['docker', 'inspect', str(docker_name)], capture_output=True, text=True)
return result.stdout
tool_list = [search, get_docker_info]
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/xml-agent-convo")
# Logic for going from intermediate steps to a string to pass into model
# This is pretty tied to the prompt
def convert_intermediate_steps(intermediate_steps):
log = ""
for action, observation in intermediate_steps:
log += (
f"<tool>{ -- -->action.tool}</tool><tool_input>{ action.tool_input}"
f"</tool_input><observation>{ observation}</observation>"
)
return log
# Logic for converting tools to string to go in prompt
def convert_tools(tools):
return "\n".join([f"{ tool.name}: { tool.description}" for tool in tools])
agent = (
{
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: convert_intermediate_steps(
x["intermediate_steps"]
),
}
| prompt.partial(tools=convert_tools(tool_list))
| model.bind(stop=["</tool_input>", "</final_answer>"])
| XMLAgentOutputParser()
)
agent_executor = AgentExecutor(agent=agent, tools=tool_list)
message1 = agent_executor.invoke({ "input": "whats the weather in New york?"})
print(f"message1: { message1}")
message2 = agent_executor.invoke({ "input": "what is docker pod which name 'lobe-chat-wzk' info? I want to know it 'Image' url"})
print(f"message2: { message2}")
执行代码
➜ python3 test10.py
message1: { 'input': 'whats the weather in New york?', 'output': 'The weather in New York is 32 degrees'}
message2: { 'input': "what is docker pod which name 'lobe-chat-wzk' info? I want to know it 'Image' url", 'output': 'The Image URL for the docker pod named \'lobe-chat-wzk\' is "lobehub/lobe-chat"'}
上一篇: 【网络】P2P打洞原理(简单描述)
本文标签
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。