YOLOv8改进 | 低照度检测 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)
CSDN 2024-06-17 16:35:36 阅读 78
一、本文介绍
本文给大家带来的2024.3月份最新改进机制,由CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations论文提出的CPA-Enhancer链式思考网络,CPA-Enhancer通过引入链式思考提示机制,实现了对未知退化条件下图像的自适应增强。该方法的核心在于能够利用CoT提示对图像退化进行动态分析和适应,从而显著提升物体检测性能。其适用的场景非常多低照度、图像去雾、雨天、雪天均有提点效果,同时其参数量进入的非常小仅有V8n仅有350W,本文内容由我独家整理!
欢迎大家订阅我的专栏一起学习YOLO!
专栏目录:
上一篇: 基于LSTM模型的时间序列预测(车厢重量预测),Python中Keras库实现LSTM,实现预测未来未知数据,包括参数详解、模型搭建,预测数据
下一篇: C++ vector用法
本文标签
YOLOv8改进 | 低照度检测 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。