【保姆级教程|YOLOv8改进】【5】精度与速度双提升,使用FasterNet替换主干网络

阿_旭 2024-06-20 10:07:12 阅读 72

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。

更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~

👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称 项目名称
1.【人脸识别与管理系统开发】 2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】 4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】 6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发】 8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统 12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统 14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统 16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统 18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统 22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统 30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统 32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~

三、深度学习【Pytorch】专栏【链接】

四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

前言

论文发表时间:2023.03.07

github地址:https://github.com/JierunChen/FasterNet

paper地址:https://export.arxiv.org/pdf/2303.03667v1.pdf

在这里插入图片描述

文章提出了一种新颖的局部卷积(PConv),它通过削减冗余计算和内存访问,更高效地提取空间特征,而且在作者测试的数据集上实现了精度与速度的双重提升。本文详细介绍了如何在yolov8中使用FasterNet替换其主干网络,并且使用修改后的yolov8进行目标检测训练与推理本文提供了所有源码免费供小伙伴们学习参考,需要的可以通过文末方式自行下载。

本文改进使用的ultralytics版本为:ultralytics == 8.0.227

目录

前言1.FasterNet简介1.1 网络结构1.2 性能对比 2.YOLOv8替换主干步骤YOLOv8网络结构前后对比定义FasterNet相关类修改指定文件 3.加载配置文件并训练4.模型推理【源码免费获取】结束语

1.FasterNet简介

在这里插入图片描述

摘要:为了设计快速的神经网络,许多研究工作一直专注于减少浮点运算(FLOPs)的数量。然而,我们观察到,FLOPs的这种减少,并不一定导致相似水平的延迟降低。这主要是由于低效的每秒浮点运算数(FLOPS)造成的。为了实现更快的网络,我们重审了流行的运算符,并演示了这种低FLOPS主要是由于运算符的频繁内存访问,特别是深度卷积。因此,我们提出了一种新颖的局部卷积(PConv),它通过削减冗余计算和内存访问,更高效地提取空间特征。在我们的PConv上,我们进一步提出了FasterNet,一个新的神经网络家族,它在广泛的设备上实现了比其他网络更高的运行速度,同时在各种视觉任务上的精度不打折扣。例如,在ImageNet-1k上,我们的小型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileViT-XXS快3.1倍、3.1倍和2.5倍,同时精度提高了2.9%。我们的大型FasterNet-L取得了令人印象深刻的83.5%的top-1精度,与新兴的Swin-B不相上下,同时在GPU上的推理吞吐量提高了49%,以及在CPU上节省了42%的计算时间。

论文主要亮点如下:

• 强调了为了实现更快的神经网络,提升每秒浮点运算数(FLOPS)的重要性,而不仅仅是减少FLOPs。

• 引入了一个简单但快速且有效的运算符,称为PConv,它具有很高的潜力来替代现有的首选选项,即深度卷积(DWConv)。

• 介绍了FasterNet,它在GPU、CPU和ARM处理器等各种设备上都能流畅且普遍地快速运行。

• 在各种任务上进行了广泛的实验,并验证了我们的PConv和FasterNet的高速度和有效性。

1.1 网络结构

在这里插入图片描述

在这里插入图片描述

1.2 性能对比

在这里插入图片描述

在这里插入图片描述

2.YOLOv8替换主干步骤

YOLOv8网络结构前后对比

在这里插入图片描述

定义FasterNet相关类

ultralytics/nn/modules/block.py中添加如下代码块,为FasterNet源码:

在这里插入图片描述

并在ultralytics/nn/modules/block.py中最上方添加如下代码:

在这里插入图片描述

修改指定文件

ultralytics/nn/modules/__init__.py文件中的添加如下代码:

在这里插入图片描述

ultralytics/nn/tasks.py 上方导入相应类名,并在parse_model解析函数中添加如下代码:

在这里插入图片描述

elif m in [BasicStage]: args.pop(1)

在这里插入图片描述

ultralytics/nn/tasks.py 中搜索self.model.modules(),定位到如下代码,并且在下方添加如下方框中的代码内容:

在这里插入图片描述

ultralytics/cfg/models/v8文件夹下新建yolov8-FasterNet.yaml文件,内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parametersnc: 80 # number of classesscales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n' # [depth, width, max_channels] n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbonebackbone: # [from, repeats, module, args] - [-1, 1, PatchEmbed_FasterNet, [40, 4, 4]] # 0-P1/4 - [-1, 1, BasicStage, [40, 1]] # 1 - [-1, 1, PatchMerging_FasterNet, [80, 2, 2]] # 2-P2/8 - [-1, 2, BasicStage, [80, 1]] # 3-P3/16 - [-1, 1, PatchMerging_FasterNet, [160, 2, 2]] # 4 - [-1, 8, BasicStage, [160, 1]] # 5-P4/32 - [-1, 1, PatchMerging_FasterNet, [320, 2, 2]] # 6 - [-1, 2, BasicStage, [320, 1]] # 7 - [-1, 1, SPPF, [320, 5]] # 8# YOLOv8.0n headhead: - [-1, 1, nn.Upsample, [None, 2, 'nearest']] - [[-1, 5], 1, Concat, [1]] # cat backbone P4 - [-1, 1, C2f, [512]] # 11 - [-1, 1, nn.Upsample, [None, 2, 'nearest']] - [[-1, 3], 1, Concat, [1]] # cat backbone P3 - [-1, 1, C2f, [256]] # 14 (P3/8-small) - [-1, 1, Conv, [256, 3, 2]] - [[-1, 11], 1, Concat, [1]] # cat head P4 - [-1, 1, C2f, [512]] # 17 (P4/16-medium) - [-1, 1, Conv, [512, 3, 2]] - [[-1, 8], 1, Concat, [1]] # cat head P5 - [-1, 1, C2f, [1024]] # 20 (P5/32-large) - [[14, 17, 20], 1, Detect, [nc]] # Detect(P3, P4, P5)

3.加载配置文件并训练

加载yolov8-BiLevelRoutingAttention.yaml配置文件,并运行train.py训练代码:

#coding:utf-8from ultralytics import YOLOif __name__ == '__main__': model = YOLO('ultralytics/cfg/models/v8/yolov8-FasterNet.yaml') model.load('yolov8n.pt') # loading pretrain weights model.train(data='datasets/TomatoData/data.yaml', epochs=30, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:

在这里插入图片描述

4.模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8from ultralytics import YOLOimport cv2# 所需加载的模型目录# path = 'models/best2.pt'path = 'runs/detect/train/weights/best.pt'# 需要检测的图片地址img_path = "TestFiles/Riped tomato_8.jpeg"# 加载预训练模型# conf0.25object confidence threshold for detection# iou0.7intersection over union (IoU) threshold for NMSmodel = YOLO(path, task='detect')# 检测图片results = model(img_path)res = results[0].plot()# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)cv2.imshow("YOLOv8 Detection", res)cv2.waitKey(0)

在这里插入图片描述

【源码免费获取】

为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【yolov8改进】即可免费获取

在这里插入图片描述


结束语

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。