辅助分类器生成对抗网络( Auxiliary Classifier Generative Adversarial Network,ACGAN)(附带pytorch代码)

cnblogs 2024-07-24 09:43:00 阅读 60

辅助分类器生成对抗网络( Auxiliary Classifier Generative Adversarial Network,ACGAN)(附带pytorch代码)

ACGAN相对于CGAN使的判别器不仅可以判别真假,也可以判别类别 。通过对生成数据类别的判断,判别器可以更好地传递loss函数使得生成器能够更加准确地找到label对应的噪声分布。

1 ACGAN基本原理

1.2 ACGAN模型解释

ACGAN相对于CGAN使的判别器不仅可以判别真假,也可以判别类别 。通过对生成数据类别的判断,判别器可以更好地传递loss函数使得生成器能够更加准确地找到label对应的噪声分布,通过下图告诉了我们ACGAN与CGAN的异同之处 :

1721649945655

对于CGAN和ACGAN,生成器输入均为潜在矢量及其标签,输出是属于输入类标签的伪造数据。对于CGAN,判别器的输入是数据(包含假的或真实的数据)及其标签, 输出是图像属于真实数据的概率。对于ACGAN,判别器的输入是数据,而输出是该图像属于真实数据的概率以及其类别概率。

在ACGAN中,对于生成器来说有两个输入,一个是标签的分类数据c,另一个是随机数据z,得到生成数据为

X_{fake}=G(photo/gif.gif)

;对于判别器,产生跨域标签和源数据的概率分布

1721652818004

1.2 ACGAN损失函数

对于判别器而言,即希望分类正确,有希望能正确分辨数据的真假;对于生成器而言,也希望分类正确,但希望判别器不能正确分辨真假。因此在训练判别器的时候,我们希望LSE+LCS最大化;在训练生成器的时候,我们希望LCS-LSE最大化。

  • <code>logP(SR = real | Xreal)表示鉴别器将真实样本源正确分类为真实样本的对数似然;
  • logP(SR = fake | Xfake)表示鉴别器正确地将假样本的来源分类为假样本的对数似然
  • E[.]表示所有样本的平均值
  • logP(CS = CS | Xreal)表示鉴别器正确分类真实样本的对数似然
  • logP(CS = CS | Xfake)表示鉴别器正确分类具有正确类别标签的假样本的对数似然

判别器的损失函数 = LSE + LCS;生成器的损失函数 = LCS - LSE

  • LSE测量鉴别器正确区分样本是真还是假的程度。这有助于鉴别器熟练地识别来源(真实的或生成的)。
  • LCS确保生成的样本不仅看起来真实,而且携带正确的类信息。它引导生成器在不同的类中产生多样化和现实的样本。

2 ACGAN pytorch代码实现

完整代码链接:https://github.com/znxlwm/pytorch-generative-model-collections/tree/master

(但是这个代码我训练的时候损失函数也对应的上,得到的图片是黑乎乎的一片,也不知道是什么原因,如果知道的师傅可以麻烦告知一下吗?(感谢))

这个代码在训练ACGAN模型的时候加载数据集的时候会出现问题,因为我使用的是minist数据集,所以应该改为单通道的:

1721782164361

<code>import utils, torch, time, os, pickle

import numpy as np

import torch.nn as nn

import torch.optim as optim

from dataloader import dataloader

class generator(nn.Module):

# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)

# Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S

def __init__(self, input_dim=100, output_dim=1, input_size=32, class_num=10):

super(generator, self).__init__()

self.input_dim = input_dim

self.output_dim = output_dim

self.input_size = input_size

self.class_num = class_num

self.fc = nn.Sequential(

nn.Linear(self.input_dim + self.class_num, 1024),

nn.BatchNorm1d(1024),

nn.ReLU(),

nn.Linear(1024, 128 * (self.input_size // 4) * (self.input_size // 4)),

nn.BatchNorm1d(128 * (self.input_size // 4) * (self.input_size // 4)),

nn.ReLU(),

)

self.deconv = nn.Sequential(

nn.ConvTranspose2d(128, 64, 4, 2, 1),

nn.BatchNorm2d(64),

nn.ReLU(),

nn.ConvTranspose2d(64, self.output_dim, 4, 2, 1),

nn.Tanh(),

)

utils.initialize_weights(self)

def forward(self, input, label):

x = torch.cat([input, label], 1)

x = self.fc(x)

x = x.view(-1, 128, (self.input_size // 4), (self.input_size // 4))

x = self.deconv(x)

return x

class discriminator(nn.Module):

# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)

# Architecture : (64)4c2s-(128)4c2s_BL-FC1024_BL-FC1_S

def __init__(self, input_dim=1, output_dim=1, input_size=32, class_num=10):

super(discriminator, self).__init__()

self.input_dim = input_dim

self.output_dim = output_dim

self.input_size = input_size

self.class_num = class_num

self.conv = nn.Sequential(

nn.Conv2d(self.input_dim, 64, 4, 2, 1),

nn.LeakyReLU(0.2),

nn.Conv2d(64, 128, 4, 2, 1),

nn.BatchNorm2d(128),

nn.LeakyReLU(0.2),

)

self.fc1 = nn.Sequential(

nn.Linear(128 * (self.input_size // 4) * (self.input_size // 4), 1024),

nn.BatchNorm1d(1024),

nn.LeakyReLU(0.2),

)

self.dc = nn.Sequential(

nn.Linear(1024, self.output_dim),

nn.Sigmoid(),

)

self.cl = nn.Sequential(

nn.Linear(1024, self.class_num),

)

utils.initialize_weights(self)

def forward(self, input):

x = self.conv(input)

x = x.view(-1, 128 * (self.input_size // 4) * (self.input_size // 4))

x = self.fc1(x)

d = self.dc(x)

c = self.cl(x)

return d, c

class ACGAN(object):

def __init__(self, args):

# parameters

self.epoch = args.epoch

self.sample_num = 100

self.batch_size = args.batch_size

self.save_dir = args.save_dir

self.result_dir = args.result_dir

self.dataset = args.dataset

self.log_dir = args.log_dir

self.gpu_mode = args.gpu_mode

self.model_name = args.gan_type

self.input_size = args.input_size # 输入图像的尺寸

self.z_dim = 62 # 潜在向量维度

self.class_num = 10

self.sample_num = self.class_num ** 2 # 总样本的数量

# load dataset

self.data_loader = dataloader(self.dataset, self.input_size, self.batch_size) # 加载数据集

data = self.data_loader.__iter__().__next__()[0] # 获得第一个批次的数据,data 的形状通常是 (batch_size, channels, height, width)

# networks init

self.G = generator(input_dim=self.z_dim, output_dim=data.shape[1], input_size=self.input_size)

self.D = discriminator(input_dim=data.shape[1], output_dim=1, input_size=self.input_size)

self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))

self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))

# 查看是否启用了gpu模式

if self.gpu_mode:

self.G.cuda()

self.D.cuda()

self.BCE_loss = nn.BCELoss().cuda() # 将交叉熵损失加载到GPU

self.CE_loss = nn.CrossEntropyLoss().cuda() # 将二元交叉熵损失加载到GPU

else:

self.BCE_loss = nn.BCELoss()

self.CE_loss = nn.CrossEntropyLoss()

print('---------- Networks architecture -------------')

utils.print_network(self.G)

utils.print_network(self.D)

print('-----------------------------------------------')

# fixed noise & condition

# 为每个类别生成潜在向量(latent vector)z,并确保同一类别的所有样本共享相同的潜在向量

self.sample_z_ = torch.zeros((self.sample_num, self.z_dim))

for i in range(self.class_num):

self.sample_z_[i*self.class_num] = torch.rand(1, self.z_dim) # 为每一个类别随机生成潜在变量

for j in range(1, self.class_num):

self.sample_z_[i*self.class_num + j] = self.sample_z_[i*self.class_num] # 同一类别的样本共享相同的潜在变量

# 为每个样本创造标签向量

temp = torch.zeros((self.class_num, 1)) # 10*1

for i in range(self.class_num):

temp[i, 0] = i

temp_y = torch.zeros((self.sample_num, 1))

for i in range(self.class_num):

temp_y[i*self.class_num: (i+1)*self.class_num] = temp # 给每个样本赋予相同的标签

# 编码one-hot

self.sample_y_ = torch.zeros((self.sample_num, self.class_num)).scatter_(1, temp_y.type(torch.LongTensor), 1)

if self.gpu_mode:

self.sample_z_, self.sample_y_ = self.sample_z_.cuda(), self.sample_y_.cuda()

# 用于训练模型

def train(self):

self.train_hist = {}

self.train_hist['D_loss'] = []

self.train_hist['G_loss'] = []

self.train_hist['per_epoch_time'] = []

self.train_hist['total_time'] = []

self.y_real_, self.y_fake_ = torch.ones(self.batch_size, 1), torch.zeros(self.batch_size, 1)

if self.gpu_mode:

self.y_real_, self.y_fake_ = self.y_real_.cuda(), self.y_fake_.cuda()

self.D.train()

print('training start!!')

start_time = time.time()

for epoch in range(self.epoch):

self.G.train()

epoch_start_time = time.time()

for iter, (x_, y_) in enumerate(self.data_loader):

if iter == self.data_loader.dataset.__len__() // self.batch_size:

break

z_ = torch.rand((self.batch_size, self.z_dim))

y_vec_ = torch.zeros((self.batch_size, self.class_num)).scatter_(1, y_.type(torch.LongTensor).unsqueeze(1), 1)

if self.gpu_mode:

x_, z_, y_vec_ = x_.cuda(), z_.cuda(), y_vec_.cuda()

# update D network

self.D_optimizer.zero_grad() # 梯度清0

D_real, C_real = self.D(x_) # 获取判别器的预测结果

D_real_loss = self.BCE_loss(D_real, self.y_real_)

C_real_loss = self.CE_loss(C_real, torch.max(y_vec_, 1)[1])

G_ = self.G(z_, y_vec_) # 生成伪造数据

D_fake, C_fake = self.D(G_)

D_fake_loss = self.BCE_loss(D_fake, self.y_fake_)

C_fake_loss = self.CE_loss(C_fake, torch.max(y_vec_, 1)[1])

D_loss = D_real_loss + C_real_loss + D_fake_loss + C_fake_loss

self.train_hist['D_loss'].append(D_loss.item())

D_loss.backward()

self.D_optimizer.step() # 更新判别器权重

# update G network

self.G_optimizer.zero_grad()

G_ = self.G(z_, y_vec_)

D_fake, C_fake = self.D(G_)

G_loss = self.BCE_loss(D_fake, self.y_real_)

C_fake_loss = self.CE_loss(C_fake, torch.max(y_vec_, 1)[1])

G_loss += C_fake_loss

self.train_hist['G_loss'].append(G_loss.item())

G_loss.backward()

self.G_optimizer.step()

# 打印训练信息

if ((iter + 1) % 100) == 0:

print("Epoch: [%2d] [%4d/%4d] D_loss: %.8f, G_loss: %.8f" %

((epoch + 1), (iter + 1), self.data_loader.dataset.__len__() // self.batch_size, D_loss.item(), G_loss.item()))

# 每一轮训练结束-------------

self.train_hist['per_epoch_time'].append(time.time() - epoch_start_time)

with torch.no_grad(): # 结束进行梯度运算

self.visualize_results((epoch+1))

# 每一epoch训练结束-------------

self.train_hist['total_time'].append(time.time() - start_time)

print("Avg one epoch time: %.2f, total %d epochs time: %.2f" % (np.mean(self.train_hist['per_epoch_time']),

self.epoch, self.train_hist['total_time'][0]))

print("Training finish!... save training results")

self.save() # 保存训练历史

utils.generate_animation(self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name,

self.epoch)

utils.loss_plot(self.train_hist, os.path.join(self.save_dir, self.dataset, self.model_name), self.model_name)

# 用于可视化生成的图像

def visualize_results(self, epoch, fix=True):

self.G.eval()

if not os.path.exists(self.result_dir + '/' + self.dataset + '/' + self.model_name):

os.makedirs(self.result_dir + '/' + self.dataset + '/' + self.model_name)

image_frame_dim = int(np.floor(np.sqrt(self.sample_num)))

if fix:

""" fixed noise """

samples = self.G(self.sample_z_, self.sample_y_)

else:

""" random noise """

sample_y_ = torch.zeros(self.batch_size, self.class_num).scatter_(1, torch.randint(0, self.class_num - 1, (self.batch_size, 1)).type(torch.LongTensor), 1)

sample_z_ = torch.rand((self.batch_size, self.z_dim))

if self.gpu_mode:

sample_z_, sample_y_ = sample_z_.cuda(), sample_y_.cuda()

samples = self.G(sample_z_, sample_y_)

if self.gpu_mode:

samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1)

else:

samples = samples.data.numpy().transpose(0, 2, 3, 1)

samples = (samples + 1) / 2

utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],

self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_epoch%03d' % epoch + '.png')

# 用于保存模型和训练历史

def save(self):

save_dir = os.path.join(self.save_dir, self.dataset, self.model_name)

if not os.path.exists(save_dir):

os.makedirs(save_dir)

torch.save(self.G.state_dict(), os.path.join(save_dir, self.model_name + '_G.pkl'))

torch.save(self.D.state_dict(), os.path.join(save_dir, self.model_name + '_D.pkl'))

with open(os.path.join(save_dir, self.model_name + '_history.pkl'), 'wb') as f:

pickle.dump(self.train_hist, f)

# 用于加载模型和训练历史

def load(self):

save_dir = os.path.join(self.save_dir, self.dataset, self.model_name)

self.G.load_state_dict(torch.load(os.path.join(save_dir, self.model_name + '_G.pkl')))

self.D.load_state_dict(torch.load(os.path.join(save_dir, self.model_name + '_D.pkl')))

由于上一个代码训练有问题,因此我训练的是以下代码:

完整代码链接:https://github.com/ChenKaiXuSan/ACGAN-PyTorch

模型结构:

# %%

'''

acgan structure.

the network model architecture from the paper [ACGAN](https://arxiv.org/abs/1610.09585)

'''

import torch

import torch.nn as nn

import numpy as np

from torch.nn.modules.activation import Sigmoid

# %%

class Generator(nn.Module):

'''

pure Generator structure

'''

def __init__(self, image_size=64, z_dim=100, conv_dim=64, channels = 1, n_classes=10):

super(Generator, self).__init__()

self.imsize = image_size

self.channels = channels

self.z_dim = z_dim

self.n_classes = n_classes

self.label_embedding = nn.Embedding(self.n_classes, self.z_dim)

self.linear = nn.Linear(self.z_dim, 768)

self.deconv1 = nn.Sequential(

nn.ConvTranspose2d(768, 384, 4, 1, 0, bias=False),

nn.BatchNorm2d(384),

nn.ReLU(True)

)

self.deconv2 = nn.Sequential(

nn.ConvTranspose2d(384, 256, 4, 2, 1, bias=False),

nn.BatchNorm2d(256),

nn.ReLU(True)

)

self.deconv3 = nn.Sequential(

nn.ConvTranspose2d(256, 192, 4, 2, 1, bias=False),

nn.BatchNorm2d(192),

nn.ReLU(True),

)

self.deconv4 = nn.Sequential(

nn.ConvTranspose2d(192, 64, 4, 2, 1, bias=False),

nn.BatchNorm2d(64),

nn.ReLU(True)

)

self.last = nn.Sequential(

nn.ConvTranspose2d(64, self.channels, 4, 2, 1, bias=False),

nn.Tanh()

)

def forward(self, z, labels):

label_emb = self.label_embedding(labels)

gen_input = torch.mul(label_emb, z)

out = self.linear(gen_input)

out = out.view(-1, 768, 1, 1)

out = self.deconv1(out)

out = self.deconv2(out)

out = self.deconv3(out)

out = self.deconv4(out)

out = self.last(out) # (*, c, 64, 64)

return out

# %%

class Discriminator(nn.Module):

'''

pure discriminator structure

'''

def __init__(self, image_size = 64, conv_dim = 64, channels = 1, n_classes = 10):

super(Discriminator, self).__init__()

self.imsize = image_size

self.channels = channels

self.n_classes = n_classes

# (*, c, 64, 64)

self.conv1 = nn.Sequential(

nn.Conv2d(self.channels, 16, 3, 2, 1, bias=False),

nn.LeakyReLU(0.2, inplace=True),

nn.Dropout(0.5, inplace=False)

)

# (*, 64, 32, 32)

self.conv2 = nn.Sequential(

nn.Conv2d(16, 32, 3, 1, 1, bias=False),

nn.BatchNorm2d(32),

nn.LeakyReLU(0.2, inplace=True),

nn.Dropout(0.5, inplace=False)

)

# (*, 128, 16, 16)

self.conv3 = nn.Sequential(

nn.Conv2d(32, 64, 3, 2, 1, bias=False),

nn.BatchNorm2d(64),

nn.LeakyReLU(0.2, inplace=True),

nn.Dropout(0.5, inplace=False)

)

# (*, 256, 8, 8)

self.conv4 = nn.Sequential(

nn.Conv2d(64, 128, 3, 1, 1, bias=False),

nn.BatchNorm2d(128),

nn.LeakyReLU(0.2, inplace=True),

nn.Dropout(0.5, inplace=False)

)

self.conv5 = nn.Sequential(

nn.Conv2d(128, 256, 3, 2, 1, bias=False),

nn.BatchNorm2d(256),

nn.LeakyReLU(0.2, inplace=True),

nn.Dropout(0.5, inplace=False)

)

self.conv6 = nn.Sequential(

nn.Conv2d(256, 512, 3, 1, 1, bias=False),

nn.BatchNorm2d(512),

nn.LeakyReLU(0.2, inplace=True),

nn.Dropout(0.5, inplace=False)

)

# output layers

# (*, 512, 8, 8)

# dis fc

self.last_adv = nn.Sequential(

nn.Linear(8*8*512, 1),

# nn.Sigmoid()

)

# aux classifier fc

self.last_aux = nn.Sequential(

nn.Linear(8*8*512, self.n_classes),

nn.Softmax(dim=1)

)

def forward(self, input):

out = self.conv1(input)

out = self.conv2(out)

out = self.conv3(out)

out = self.conv4(out)

out = self.conv5(out)

out = self.conv6(out)

flat = out.view(input.size(0), -1)

fc_dis = self.last_adv(flat)

fc_aux = self.last_aux(flat)

return fc_dis.squeeze(), fc_aux

数据加载:

# %%

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

from __future__ import unicode_literals

import torch

import torchvision.transforms as transform

from torchvision.utils import save_image

from torch.utils.data import DataLoader

from torchvision import datasets

# %%

def getdDataset(opt):

if opt.dataset == 'mnist':

dst = datasets.MNIST(

# 相对路径,以调用的文件位置为准——因为我不是每次都想下载数据,因为很多数据是重复的

root='D:\\ProfessionStudy\\AI\\data',code>

train=True,

download=True,

transform=transform.Compose(

[transform.Resize(opt.img_size), transform.ToTensor(), transform.Normalize([0.5], [0.5])]

)

)

elif opt.dataset == 'fashion':

dst = datasets.FashionMNIST(

root='D:\\ProfessionStudy\\AI\\data',code>

train=True,

download=True,

# split='mnist',code>

transform=transform.Compose(

[transform.Resize(opt.img_size), transform.ToTensor(), transform.Normalize([0.5], [0.5])]

)

)

elif opt.dataset == 'cifar10':

dst = datasets.CIFAR10(

root='D:\\ProfessionStudy\\AI\\data',code>

train=True,

download=True,

transform=transform.Compose(

[transform.Resize(opt.img_size), transform.ToTensor(), transform.Normalize([0.5], [0.5])]

)

)

dataloader = DataLoader(

dst,

batch_size=opt.batch_size,

shuffle=True,

)

return dataloader

# %%

from torchvision.utils import make_grid

import matplotlib.pyplot as plt

import numpy as np

if __name__ == "__main__":

class opt:

dataroot = '../../data'

dataset = 'mnist'

img_size = 32

batch_size = 10

dataloader = getdDataset(opt)

for i, (imgs, labels) in enumerate(dataloader):

print(i, imgs.shape, labels.shape)

print(labels)

img = imgs[0]

img = img.numpy()

img = make_grid(imgs, normalize=True).numpy()

img = np.transpose(img, (1, 2, 0))

plt.imshow(img)

plt.show()

plt.close()

break

# %%

训练过程:

# %%

"""

wgan with different loss function, used the pure dcgan structure.

"""

import os

import time

import torch

import datetime

import torch.nn as nn

import torchvision

from torchvision.utils import save_image

from models.acgan import Generator, Discriminator

from utils.utils import *

# %%

class Trainer_acgan(object):

def __init__(self, data_loader, config):

super(Trainer_acgan, self).__init__()

# data loader

self.data_loader = data_loader

# exact model and loss

self.model = config.model

# model hyper-parameters

self.imsize = config.img_size

self.g_num = config.g_num

self.z_dim = config.z_dim

self.channels = config.channels

self.n_classes = config.n_classes

self.g_conv_dim = config.g_conv_dim

self.d_conv_dim = config.d_conv_dim

self.epochs = config.epochs

self.batch_size = config.batch_size

self.num_workers = config.num_workers

self.g_lr = config.g_lr

self.d_lr = config.d_lr

self.beta1 = config.beta1

self.beta2 = config.beta2

self.pretrained_model = config.pretrained_model

self.dataset = config.dataset

self.use_tensorboard = config.use_tensorboard

# path

self.image_path = config.dataroot

self.log_path = config.log_path

self.sample_path = config.sample_path

self.log_step = config.log_step

self.sample_step = config.sample_step

self.version = config.version

# path with version

self.log_path = os.path.join(config.log_path, self.version)

self.sample_path = os.path.join(config.sample_path, self.version)

if self.use_tensorboard:

self.build_tensorboard()

self.build_model()

def train(self):

'''

Training

'''

# fixed input for debugging 用于每个epoch训练完成生成器后,用来测试其性能的

fixed_z = tensor2var(torch.randn(self.batch_size, self.z_dim)) # (*, 100)

fixed_labels = tensor2var(torch.randint(0, self.n_classes, (self.batch_size,), dtype=torch.long))

# fixed_labels = to_LongTensor(np.array([num for _ in range(self.n_classes) for num in range(self.n_classes)]))

for epoch in range(self.epochs):

# start time

start_time = time.time()

for i, (real_images, labels) in enumerate(self.data_loader):

# configure input

real_images = tensor2var(real_images)

labels = tensor2var(labels)

# adversarial ground truths;valid 和 fake 是用于计算判别器损失的对抗性标签。

valid = tensor2var(torch.full((real_images.size(0),), 0.9)) # (*, )

fake = tensor2var(torch.full((real_images.size(0),), 0.0)) #(*, )

# ==================== Train D 训练判别器 ==================

self.D.train()

self.G.train()

self.D.zero_grad()

# 计算真实数据损失

dis_out_real, aux_out_real = self.D(real_images)

d_loss_real = self.adversarial_loss_sigmoid(dis_out_real, valid) + self.aux_loss(aux_out_real, labels)

# noise z for generator

# 随机初始化假数据和标签

z = tensor2var(torch.randn(real_images.size(0), self.z_dim)) # *, 100

gen_labels = tensor2var(torch.randint(0, self.n_classes, (real_images.size(0),), dtype=torch.long))

# 生成假数据和标签

fake_images = self.G(z, gen_labels) # (*, c, 64, 64)

dis_out_fake, aux_out_fake = self.D(fake_images) # (*,)

# 计算假数据的损失

d_loss_fake = self.adversarial_loss_sigmoid(dis_out_fake, fake) + self.aux_loss(aux_out_fake, gen_labels)

# total d loss

d_loss = d_loss_real + d_loss_fake

d_loss.backward()

# update D

self.d_optimizer.step()

# calculate dis accuracy

d_acc = compute_acc(aux_out_real, aux_out_fake, labels, gen_labels)

# train the generator every 5 steps 每五步训练一次生成器

if i % self.g_num == 0:

# =================== Train G and gumbel =====================

self.G.zero_grad()

# create random noise

fake_images = self.G(z, gen_labels)

# compute loss with fake images

dis_out_fake, aux_out_fake = self.D(fake_images) # batch x n

g_loss_fake = self.adversarial_loss_sigmoid(dis_out_fake, valid) + self.aux_loss(aux_out_fake, gen_labels)

g_loss_fake.backward()

# update G

self.g_optimizer.step()

# 每个epoch训练完成-------------------------------------------------------------------------------------------

# log to the tensorboard

self.logger.add_scalar('d_loss', d_loss.data, epoch)

self.logger.add_scalar('g_loss_fake', g_loss_fake.data, epoch)

# end one epoch

# print out log info

if (epoch) % self.log_step == 0:

elapsed = time.time() - start_time

elapsed = str(datetime.timedelta(seconds=elapsed))

print("Elapsed [{}], G_step [{}/{}], D_step[{}/{}], d_loss: {:.4f}, g_loss: {:.4f}, Acc: {:.4f}"

.format(elapsed, epoch, self.epochs, epoch,

self.epochs, d_loss.item(), g_loss_fake.item(), d_acc))

# sample images

if (epoch) % self.sample_step == 0:

self.G.eval()

# save real image

save_sample(self.sample_path + '/real_images/', real_images, epoch)

with torch.no_grad():

fake_images = self.G(fixed_z, fixed_labels)

# save fake image

save_sample(self.sample_path + '/fake_images/', fake_images, epoch)

# sample sample one images

save_sample_one_image(self.sample_path, real_images, fake_images, epoch)

# 所有epoch训练完成-----------------------------------------------------------------------------------------------

# 建立训练模型

def build_model(self):

self.G = Generator(image_size = self.imsize, z_dim = self.z_dim, conv_dim = self.g_conv_dim, channels = self.channels).cuda()

self.D = Discriminator(image_size = self.imsize, conv_dim = self.d_conv_dim, channels = self.channels).cuda()

# apply the weights_init to randomly initialize all weights

# to mean=0, stdev=0.2

self.G.apply(weights_init)

self.D.apply(weights_init)

# optimizer

self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])

self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2])

# for orignal gan loss function

self.adversarial_loss_sigmoid = nn.BCEWithLogitsLoss().cuda()

self.aux_loss = nn.CrossEntropyLoss().cuda()

# print networks

print(self.G)

print(self.D)

# 日志记录

def build_tensorboard(self):

from torch.utils.tensorboard import SummaryWriter

self.logger = SummaryWriter(self.log_path)

def save_image_tensorboard(self, images, text, step):

if step % 100 == 0:

img_grid = torchvision.utils.make_grid(images, nrow=8)

self.logger.add_image(text + str(step), img_grid, step)

self.logger.close()

额外知识

什么是对数似然函数?

概率:在给定参数值的情况下,概率用于描述未来出现某种情况的观测数据的可信度。

似然:在给定观测数据的情况下,似然用于描述参数值的可信度。

极大似然估计:在给定观测数据的情况下,某个参数值有多个取值可能,但是如果存在某个参数值,使其对应的似然值最大,那就说明这个值就是该参数最可信的参数值

对数似然函数

极大似然估计的求解方法,往往是对参数θ求导,然后找到导函数为0时对应的参数值,根据函数的单调性,找到极大似然估计时对应的参数θ。

但是在实际问题中,对于大批量的样本(大量的观测结果),其概率值是由很多项相乘组成的式子,对于参数θ的求导,是一个很复杂的问题,于是我们一个直观的想法,就是把它转成对数函数,累乘就变成了累加,即似然函数也就变成了对数似然函数

对数似然函数的的主要作用,就是用来定义某个机器学习模型的损失函数,线性回归或者逻辑回归中都可以用到,然后我们再根据梯度下降/上升法求解损失函数的最优解,取得最优解时对应的参数θ,就是我们机器学习模型想要学习的参数 。

参考:

ACGAN(Auxiliary Classifier GAN)详解与实现(tensorflow2.x实现)-CSDN博客

一天一GAN-day4-ACGAN - 知乎 (zhihu.com)

GAN生成对抗网络-ACGAN原理与基本实现-条件生成对抗网络05 - gemoumou - 博客园 (cnblogs.com)

[生成对抗网络GAN入门指南](9)ACGAN: Conditional Image Synthesis with Auxiliary Classifier GANs-CSDN博客

【For非数学专业】通俗理解似然函数、概率、极大似然估计和对数似然_对数似然估计-CSDN博客

https://github.com/znxlwm/pytorch-generative-model-collections/tree/master



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。