AI大模型企业应用实战(25)-为Langchain Agent添加记忆功能

cnblogs 2024-06-26 10:09:05 阅读 83

0 前言

在开发复杂的AI应用时,赋予Agent记忆能力是一个关键步骤。这不仅能提高Agent的性能,还能使其在多轮对话中保持上下文连贯性。本文将详细介绍如何在Langchain框架中为Agent添加记忆功能,并深入解析每个步骤的原理和最佳实践。

Agent记忆功能的核心组件

在Langchain中,构建具有记忆功能的Agent主要涉及三个核心组件:

  1. 工具(Tools): Agent用来执行特定任务的功能模块。
  2. 记忆(Memory): 存储和检索对话历史的组件。
  3. 大语言模型(LLM): 负责理解输入、决策和生成响应的核心智能体。

这三个组件的协同工作使Agent能够在多轮对话中保持连贯性并做出明智的决策。

1 构建Agent可用工具

首先,我们需要定义Agent可以使用的工具。

# 构建一个搜索工具,Langchain提供的一个封装,用于进行网络搜索。

search = SerpAPIWrapper()

# 创建一个数学计算工具,特殊的链,它使用LLM来解析和解决数学问题。

llm_math_chain = LLMMathChain(

llm=llm,

verbose=True

)

tools = [

Tool(

name = "Search",

func=search.run,

description="useful for when you need to answer questions about current events or the current state of the world"

),

Tool(

name="Calculator",

func=llm_math_chain.run,

description="useful for when you need to answer questions about math"

),

]

print(tools)

2 增加memory组件

接下来,我们需要为Agent添加记忆功能。Langchain提供了多种记忆组件,这里我们使用ConversationBufferMemory:

from langchain.memory import ConversationBufferMemory

# 记忆组件

memory = ConversationBufferMemory(

# 指定了存储对话历史的键名

memory_key="chat_history",

# 确保返回的是消息对象,而不是字符串,这对于某些Agent类型很重要

return_messages=True

)

3 定义agent

现在我们有了工具和记忆组件,可以初始化我们的Agent了:

from langchain.agents import AgentType, initialize_agent

agent_chain = initialize_agent(

tools,

llm,

agent=AgentType.OPENAI_FUNCTIONS,

verbose=True,

handle_parsing_errors=True,

memory=memory

)

这里的关键点是:

  • AgentType.OPENAI_FUNCTIONS: 这种Agent类型特别适合使用OpenAI的function calling特性。
  • verbose=True: 启用详细输出,有助于调试。
  • handle_parsing_errors=True: 自动处理解析错误,提高Agent的稳定性。
  • memory=memory: 将我们之前定义的记忆组件传递给Agent。

4 查看默认的agents prompt啥样

了解Agent使用的默认提示词模板非常重要,这有助于我们理解Agent的行为并进行必要的调整:

print(agent_chain.agent.prompt.messages)

print(agent_chain.agent.prompt.messages[0])

print(agent_chain.agent.prompt.messages[1])

print(agent_chain.agent.prompt.messages[2])

这将输出Agent使用的默认提示词模板。通常包括系统消息、人类消息提示词模板和AI消息模板。

5 优化Agent配置

为了更好地利用记忆功能,我们需要修改Agent的配置,确保它在每次交互中都能访问对话历史。

需要使用agent_kwargs传递参数,将chat_history传入

agent_chain = initialize_agent(

tools,

llm,

agent=AgentType.OPENAI_FUNCTIONS,

verbose=True,

handle_parsing_errors=True,#处理解析错误

agent_kwargs={

"extra_prompt_messages":[MessagesPlaceholder(variable_name="chat_history"),MessagesPlaceholder(variable_name="agent_scratchpad")],

},

memory=memory #记忆组件

)

这里的关键改变是:

  • agent_kwargs: 通过这个参数,我们可以自定义Agent的行为

  • extra_prompt_messages:我们添加了两个MessagesPlaceholder:

    • chat_history: 用于插入对话历史。
    • agent_scratchpad: 用于Agent的中间思考过程。

这样配置确保了Agent在每次决策时都能考虑到之前的对话内容。

6 验证优化后的提示词模板

最后,让我们检查一下优化后的提示词模板:

print(agent_chain.agent.prompt.messages)

print(agent_chain.agent.prompt.messages[0])

print(agent_chain.agent.prompt.messages[1])

print(agent_chain.agent.prompt.messages[2])

能看到新添加的chat_historyagent_scratchpad占位符。

7 总结

通过以上步骤,我们成功地为Langchain Agent添加了记忆功能。这使得Agent能够在多轮对话中保持上下文连贯性,大大提高了其在复杂任务中的表现。

添加记忆功能只是构建高效Agent的第一步。在实际应用中,你可能需要根据具体需求调整记忆组件的类型和参数,或者实现更复杂的记忆管理策略。

始终要注意平衡记忆的深度和Agent的响应速度。过多的历史信息可能会导致决策缓慢或偏离主题。因此,在生产环境中,你可能需要实现某种形式的记忆修剪或总结机制。

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化
  • 活动&券等营销中台建设
  • 交易平台及数据中台等架构和开发设计
  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化
  • LLM应用开发

目前主攻降低软件复杂性设计、构建高可用系统方向。

参考:

  • 编程严选网

本文由博客一文多发平台 OpenWrite 发布!



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。