【Python搜索算法】深度优先搜索(DFS)算法原理详解与应用,示例+代码

LeapMay 2024-07-01 17:05:03 阅读 62

目录

1 基本原理

2 DFS算法流程

3 时间复杂度

4 空间复杂度

5 DFS算法应用案例:

5.1 解决路径查找问题 

5.2 解决图的连通性问题

5.3  拓扑排序

5.4  在树结构中进行深度遍历


深度优先搜索(DFS)是一种重要的图遍历算法,用于探索图中的节点和边。

1 基本原理

DFS 是一种递归或栈(堆栈)数据结构的算法,用于图的遍历。从一个起始节点开始,尽可能深入图的分支,直到无法继续深入,然后回溯并探索其他分支。通过标记已访问的节点来避免重复访问。

2 DFS算法流程

创建一个空的栈(Stack)数据结构,用于存储待访问的节点。

从起始节点开始,将其标记为已访问并入栈。

重复以下步骤,直到栈为空: a. 出栈一个节点,并标记为已访问。 b. 检查该节点的所有未被访问的邻居节点。 c. 对于每个未访问的邻居节点,将其标记为已访问并入栈。

如果无法再继续,即没有未访问的邻居节点,返回上一个节点并继续。

重复步骤2-4,直到遍历整个图。

3 时间复杂度

在最坏情况下,DFS的时间复杂度可以是O(V + E),其中V是节点数,E是边数。由于DFS可能访问整个图,因此在稠密图中可能效率较低。

4 空间复杂度

空间复杂度取决于递归深度或堆栈的大小,通常为O(V) 

5 DFS算法应用案例:

5.1 解决路径查找问题 

        一个常见的应用案例是查找从起始节点到目标节点的路径。例如,在以下示例图中,我们要查找从节点A到节点G的路径。

下面是一个简单的Python代码示例,用于执行DFS算法,找到从节点A到节点G的路径。

# 定义示例图

GRAPH = {

'A': ['B', 'C'],

'B': ['D', 'E'],

'C': ['F'],

'D': [],

'E': ['F'],

'F': ['G'],

'G': []

}

# 定义DFS算法,查找从起始节点到目标节点的路径

def dfs(graph, start, end, path=[]):

# 将当前节点添加到路径中

path = path + [start]

# 如果当前节点等于目标节点,返回找到的路径

if start == end:

return path

# 如果当前节点不在图中,返回None

if start not in graph:

return None

# 遍历当前节点的邻居节点

for node in graph[start]:

# 如果邻居节点不在已访问的路径中,继续DFS

if node not in path:

new_path = dfs(graph, node, end, path)

# 如果找到路径,返回该路径

if new_path:

return new_path

# 如果无法找到路径,返回None

return None

# 调用DFS算法查找从A到G的路径

path = dfs(GRAPH, 'A', 'G')

if path:

print("Path from A to G:", path)

else:

print("No path found.")

输出:

5.2 解决图的连通性问题:查找下图中的连通组件

import networkx as nx

import matplotlib.pyplot as plt

# 定义一个有向图的邻接列表表示

graph = {

'A': ['B', 'C'],

'B': ['A'],

'C': ['A'],

'D': ['E'],

'E': ['D'],

'F': [],

}

def find_connected_components(graph):

def dfs(node, component):

visited.add(node)

component.append(node)

for neighbor in graph.get(node, []):

if neighbor not in visited:

dfs(neighbor, component)

visited = set()

connected_components = []

for node in graph:

if node not in visited:

component = []

dfs(node, component)

connected_components.append(component)

return connected_components

# 查找连通组件

components = find_connected_components(graph)

# 打印连通组件

for i, component in enumerate(components, start=1):

print(f"Connected Component {i}: {component}")

# 创建有向图

G = nx.DiGraph(graph)

# 绘制图形

pos = nx.spring_layout(G)

nx.draw(G, pos, with_labels=True, node_size=500, node_color='lightblue', font_size=10, font_color='black', font_weight='bold')

# 添加边的标签

labels = {}

for node in G.nodes():

labels[node] = node

edge_labels = {(u, v): v for u, v in G.edges()}

nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)

plt.show()

输出:

          示例创建 find_connected_components 函数,用于查找图中的连通组件。它使用深度优先搜索(DFS)来遍历图,找到连通组件,并将它们添加到 connected_components 列表中。解析如下:

find_connected_components(graph) 函数接受一个有向图的邻接列表表示为输入,并返回图中的连通组件。

内部嵌套的 dfs(node, component) 函数是深度优先搜索函数。它采用两个参数:

node 表示当前遍历的节点component 是一个列表,用于存储当前连通组件中的节点。

dfs 函数的目标是遍历与 node 相关联的节点,并将它们添加到 component 中。

visited 是一个集合,用于跟踪已访问的节点。一开始,它是空的。

connected_components 是一个列表,用于存储找到的连通组件。开始时,它也是空的。

外部的 for 循环遍历图中的每个节点,以确保所有节点都被覆盖。对于每个节点,它执行以下操作:

如果该节点尚未在 visited 中,表示它是一个新的连通组件的起始节点。创建一个新的空列表 component,用于存储该连通组件的节点。调用 dfs(node, component) 函数,开始深度优先搜索,并将所有与该节点相连的节点添加到 component 中。component 添加到 connected_components 中,表示已找到一个连通组件。

最后,函数返回 connected_components 列表,其中包含了所有找到的连通组件。

5.3  拓扑排序

        拓扑排序是用于确定有向图中节点的线性顺序,使得图中的每一条有向边都是从前面的节点指向后面的节点。在拓扑排序中,没有环路存在。

应用示例

        假设有一个有向图如下,表示课程之间的依赖关系,您需要找到一个可以完成所有课程的顺序。如果存在环路,表示存在无法解决的依赖关系,您需要找到一个没有环路的顺序。

import networkx as nx

import matplotlib.pyplot as plt

def topological_sort(graph):

def dfs(node):

visited.add(node)

for neighbor in graph.get(node, []):

if neighbor not in visited:

dfs(neighbor)

result.append(node)

visited = set()

result = []

for node in graph:

if node not in visited:

dfs(node)

return result[::-1]

# 定义有向图的依赖关系

courses = {

'CSC300': ['CSC100', 'CSC200'],

'CSC200': ['CSC100'],

'CSC100': [],

'CSC400': ['CSC300', 'CSC200'],

}

# 创建一个有向图

G = nx.DiGraph(courses)

# 调用拓扑排序算法

topological_order = topological_sort(courses)

if topological_order:

print("Topological Order of Courses:", topological_order)

else:

print("No valid topological order (contains a cycle).")

# 绘制有向图

pos = nx.spring_layout(G)

nx.draw(G, pos, with_labels=True, node_size=500, node_color='lightblue', font_size=10, font_color='black', font_weight='bold')

# 添加边的标签

labels = {}

for node in G.nodes():

labels[node] = node

edge_labels = {(u, v): v for u, v in G.edges()}

nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)

plt.show()

输出为:

        示例定义了topological_sort函数,用于执行拓扑排序。这个函数使用深度优先搜索(DFS)来查找图的拓扑排序。如果图中存在环路,该函数仍然会返回一个排序结果,但它不保证是一个有效的拓扑排序。

5.4  在树结构中进行深度遍历

import networkx as nx

import matplotlib.pyplot as plt

class TreeNode:

def __init__(self, value):

self.value = value

self.children = []

def add_child(self, child_node):

self.children.append(child_node)

def depth_first_search(node, graph, parent=None):

if node is None:

return

graph.add_node(node.value) # 添加节点到图中

if parent is not None:

graph.add_edge(parent.value, node.value) # 添加边连接父节点和当前节点

print(node.value) # 在DFS时输出节点值

for child in node.children:

depth_first_search(child, graph, node) # 递归遍历子节点

# 创建一个较复杂的树结构

root = TreeNode("A")

b = TreeNode("B")

c = TreeNode("C")

d = TreeNode("D")

e = TreeNode("E")

f = TreeNode("F")

g = TreeNode("G")

h = TreeNode("H")

i = TreeNode("I")

root.add_child(b)

root.add_child(c)

b.add_child(d)

b.add_child(e)

c.add_child(f)

c.add_child(g)

g.add_child(h)

h.add_child(i)

# 创建一个有向图

G = nx.DiGraph()

# 执行深度优先搜索并创建图

depth_first_search(root, G)

# 绘制树结构图

pos = nx.spring_layout(G)

nx.draw(G, pos, with_labels=True, node_size=500, node_color='lightblue', font_size=10, font_color='black', font_weight='bold')

# 添加边的标签

labels = {}

for node in G.nodes():

labels[node] = node

edge_labels = {(u, v): v for u, v in G.edges()}

nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)

plt.show()

         这段代码用于创建一个树结构,然后执行深度优先搜索(DFS),最后绘制树结构图并添加标签。以下是对代码的详细解析:

首先,定义了一个树结构的节点TreeNode,其中每个节点具有一个值和子节点列表。

depth_first_search 函数中,执行深度优先搜索。它接受三个参数:

node:当前要处理的节点。graph:用于构建树结构图的 NetworkX 有向图对象。parent:父节点,用于添加边。

在函数中,执行以下操作:

添加当前节点到图中(graph.add_node(node.value))。如果存在父节点,添加从父节点到当前节点的边(graph.add_edge(parent.value, node.value))。打印当前节点的值,以在DFS期间输出节点值。递归遍历当前节点的子节点,使用当前节点作为父节点。

创建一个较复杂的树结构:

根节点为 "A",有两个子节点 "B" 和 "C"。节点 "B" 有两个子节点 "D" 和 "E"。节点 "C" 有两个子节点 "F" 和 "G"。节点 "G" 有一个子节点 "H"。节点 "H" 有一个子节点 "I"。

创建一个 NetworkX 有向图对象 G,用于存储树结构图。

执行深度优先搜索,从根节点 "A" 开始。深度优先搜索会递归遍历树的每个分支,并在DFS期间输出节点值。

使用 NetworkX 绘制树结构图:

nx.spring_layout 用于确定节点的位置。nx.draw 用于绘制节点和边,设置节点的大小、颜色和标签。nx.draw_networkx_edge_labels 用于添加边的标签。

最后,通过 plt.show() 显示绘制的树结构图。



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。