JAVA用框架SpringAI实现人工智能(一)配置
cesske 2024-07-29 11:31:01 阅读 64
<code> Spring AI 是 Spring 官方社区项目,旨在简化 Java AI 应用程序开发,让 Java 开发者像使用 Spring 开发普通应用一样开发 AI 应用。
一、Spring AI 简介
据 Spring AI 官网描述,该项目的灵感来自著名的 Python 项目,如 LangChain 和 LlamaIndex,但 Spring AI 并不是这些项目的直接复制。Spring AI 相信下一波 Generative AI 生成式应用程序将不仅面向 Python 开发人员,而且将在许多编程语言中广泛应用。
Spring AI 的核心是提供抽象,作为开发 Java AI 应用程序的基础,提供以下功能:
1、提供多种大模型服务对接能力,包括业界大多数主流大模型服务,如 OpenAI、微软、亚马逊、谷歌和 Huggingface等;
2、支持灵活的 Prompt Template 和模型输出解析 Output Parsing 能力;
3、支持多模态的生成式 AI 能力,如对话,文生图、文生语音等;
4、提供通用的可移植的 API 以访问各类模型服务和 Embedding 服务,支持同步和流式调用,同时也支持传递特定模型的定制参数;
5、支持 RAG 能力的基础组件,包括 DocumentLoader、TextSpillter、EmobeddingClient、VectorStore 等;
6、支持 AI Spring Boot Starter 实现配置自动装配。
Spring Cloud Alibaba AI 简介
Spring Cloud Alibaba AI 目前基于 Spring AI 0.8.1[1]版本 API 完成通义系列大模型的接入。通义接入是基于阿里云灵积模型服务[2],灵积模型服务建立在“模型即服务”(Model-as-a-Service,MaaS)的理念基础之上,围绕 AI 各领域模型,通过标准化的API提供包括模型推理、模型微调训练在内的多种模型服务。
在当前最新版本中,Spring Cloud Alibaba AI 主要完成了几种常见生成式模型的适配,包括对话、文生图、文生语音等,开发者可以使用 Spring Cloud Alibaba AI 开发基于通义的聊天、图片或语音生成 AI 应用,框架还提供 OutParser、Prompt Template、Stuff 等实用能力。
以下是当前官方提供的 Spring Cloud Alibaba AI 应用开发示例,访问http://sca.aliyun.com可查看。
聊天对话应用
文生图应用
文生语音应用
模型输出解析OutputParser(实现从 String 到自动 POJO 映射)
使用 Prompt Template
让 AI 模型接入外部数据(Prompt Stuff)
现在我们来做个实例,来使用Spring AI实现一些简单的功能:
1、在项目 pom.xml 中加入 Spring Cloud Alibaba 依赖:
<?xml version="1.0" encoding="UTF-8"?>code>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"code>
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">code>
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.3.2</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.cesske</groupId>
<artifactId>demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>demo</name>
<description>Demo project for Spring Boot</description>
<url/>
<licenses>
<license/>
</licenses>
<developers>
<developer/>
</developers>
<scm>
<connection/>
<developerConnection/>
<tag/>
<url/>
</scm>
<properties>
<java.version>17</java.version>
<spring-ai.version>1.0.0-M1</spring-ai.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-bom</artifactId>
<version>${spring-ai.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>
2、添加配置
application.yml
spring:
ai:
openai:
api-key: sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
base-url: xxxxxxxxxxxxxxxxxxx
chat:
options:
#model: gpt-3.5-turbo
temperature: 0.3F
cloud:
ai:
tongyi:
chat:
options:
# Replace the following key with a valid API-KEY.
api-key: sk-a3d73b1709bf4a178c28ed7c8b3b5axx
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。