快速方便地下载huggingface的模型库和数据集

旋转的油纸伞 2024-08-30 10:33:01 阅读 91

快速方便地下载huggingface的模型库和数据集

方法一:用于使用 aria2/wget+git 下载 Huggingface 模型和数据集的 CLI 工具特点Usage

方法二:模型下载【个人使用记录】保持目录结构数据集下载不足之处

方法一:用于使用 aria2/wget+git 下载 Huggingface 模型和数据集的 CLI 工具

来自https://gist.github.com/padeoe/697678ab8e528b85a2a7bddafea1fa4f。

使用方法:将hfd.sh拷贝过去,然后参考下面的参考命令,下载数据集或者模型

🤗Huggingface 模型下载器

考虑到官方 <code>huggingface-cli 缺乏多线程下载支持,以及错误处理不足在 hf_transfer 中,这个命令行工具巧妙地利用 wgetaria2 来处理 LFS 文件,并使用 git clone 来处理其余文件。

特点

⏯️ 从断点恢复:您可以随时重新运行它或按 Ctrl+C。🚀 多线程下载:利用多线程加速下载过程。🚫 文件排除:使用--exclude--include跳过或指定文件,为具有重复格式的模型(例如,*.bin*.safetensors)节省时间)。🔐 身份验证支持:对于需要 Huggingface 登录的门控模型,请使用 --hf_username--hf_token 进行身份验证。🪞 镜像站点支持:使用“HF_ENDPOINT”环境变量进行设置。🌍代理支持:使用“HTTPS_PROXY”环境变量进行设置。📦 简单:仅依赖gitaria2c/wget

Usage

首先,下载 hfd.sh 或克隆此存储库,然后授予脚本执行权限。

chmod a+x hfd.sh

为了方便起见,您可以创建一个别名

alias hfd="$PWD/hfd.sh"code>

使用说明:

$ ./hfd.sh -h

Usage:

hfd <repo_id> [--include include_pattern] [--exclude exclude_pattern] [--hf_username username] [--hf_token token] [--tool aria2c|wget] [-x threads] [--dataset] [--local-dir path]

Description:

Downloads a model or dataset from Hugging Face using the provided repo ID.

Parameters:

repo_id The Hugging Face repo ID in the format 'org/repo_name'.

--include (Optional) Flag to specify a string pattern to include files for downloading.

--exclude (Optional) Flag to specify a string pattern to exclude files from downloading.

include/exclude_pattern The pattern to match against filenames, supports wildcard characters. e.g., '--exclude *.safetensor', '--include vae/*'.

--hf_username (Optional) Hugging Face username for authentication. **NOT EMAIL**.

--hf_token (Optional) Hugging Face token for authentication.

--tool (Optional) Download tool to use. Can be aria2c (default) or wget.

-x (Optional) Number of download threads for aria2c. Defaults to 4.

--dataset (Optional) Flag to indicate downloading a dataset.

--local-dir (Optional) Local directory path where the model or dataset will be stored.

Example:

hfd bigscience/bloom-560m --exclude *.safetensors

hfd meta-llama/Llama-2-7b --hf_username myuser --hf_token mytoken -x 4

hfd lavita/medical-qa-shared-task-v1-toy --dataset

下载模型:

hfd bigscience/bloom-560m

下载模型需要登录

从https://huggingface.co/settings/tokens获取huggingface令牌,然后

hfd meta-llama/Llama-2-7b --hf_username YOUR_HF_USERNAME_NOT_EMAIL --hf_token YOUR_HF_TOKEN

下载模型并排除某些文件(例如.safetensors):

hfd bigscience/bloom-560m --exclude *.safetensors

使用 aria2c 和多线程下载:

hfd bigscience/bloom-560m

输出

下载过程中,将显示文件 URL:

$ hfd bigscience/bloom-560m --tool wget --exclude *.safetensors

...

Start Downloading lfs files, bash script:

wget -c https://huggingface.co/bigscience/bloom-560m/resolve/main/flax_model.msgpack

# wget -c https://huggingface.co/bigscience/bloom-560m/resolve/main/model.safetensors

wget -c https://huggingface.co/bigscience/bloom-560m/resolve/main/onnx/decoder_model.onnx

...

# 安装包

apt update

apt-get install aria2

apt-get install iftop

apt-get install git-lfs

#参考命令

bash /xxx/xxx/hfd.sh mmaaz60/ActivityNet-QA-Test-Videos --tool aria2c -x 16 --dataset --local-dir /xxx/xxx/ActivityNet

hfd.sh

#!/usr/bin/env bash

# Color definitions

RED='\033[0;31m'code>

GREEN='\033[0;32m'code>

YELLOW='\033[1;33m'code>

NC='\033[0m' # No Colorcode>

trap 'printf "${YELLOW}\nDownload interrupted. If you re-run the command, you can resume the download from the breakpoint.\n${NC}"; exit 1' INT

display_help() {

cat << EOF

Usage:

hfd <repo_id> [--include include_pattern] [--exclude exclude_pattern] [--hf_username username] [--hf_token token] [--tool aria2c|wget] [-x threads] [--dataset] [--local-dir path]

Description:

Downloads a model or dataset from Hugging Face using the provided repo ID.

Parameters:

repo_id The Hugging Face repo ID in the format 'org/repo_name'.

--include (Optional) Flag to specify a string pattern to include files for downloading.

--exclude (Optional) Flag to specify a string pattern to exclude files from downloading.

include/exclude_pattern The pattern to match against filenames, supports wildcard characters. e.g., '--exclude *.safetensor', '--include vae/*'.

--hf_username (Optional) Hugging Face username for authentication. **NOT EMAIL**.

--hf_token (Optional) Hugging Face token for authentication.

--tool (Optional) Download tool to use. Can be aria2c (default) or wget.

-x (Optional) Number of download threads for aria2c. Defaults to 4.

--dataset (Optional) Flag to indicate downloading a dataset.

--local-dir (Optional) Local directory path where the model or dataset will be stored.

Example:

hfd bigscience/bloom-560m --exclude *.safetensors

hfd meta-llama/Llama-2-7b --hf_username myuser --hf_token mytoken -x 4

hfd lavita/medical-qa-shared-task-v1-toy --dataset

EOF

exit 1

}

MODEL_ID=$1

shift

# Default values

TOOL="aria2c"code>

THREADS=4

HF_ENDPOINT=${ HF_ENDPOINT:-"https://hf-mirror.com"}

while [[ $# -gt 0 ]]; do

case $1 in

--include) INCLUDE_PATTERN="$2"; shift 2 ;;code>

--exclude) EXCLUDE_PATTERN="$2"; shift 2 ;;code>

--hf_username) HF_USERNAME="$2"; shift 2 ;;code>

--hf_token) HF_TOKEN="$2"; shift 2 ;;code>

--tool) TOOL="$2"; shift 2 ;;code>

-x) THREADS="$2"; shift 2 ;;code>

--dataset) DATASET=1; shift ;;

--local-dir) LOCAL_DIR="$2"; shift 2 ;;code>

*) shift ;;

esac

done

# Check if aria2, wget, curl, git, and git-lfs are installed

check_command() {

if ! command -v $1 &>/dev/null; then

echo -e "${RED}$1 is not installed. Please install it first.${NC}"

exit 1

fi

}

# Mark current repo safe when using shared file system like samba or nfs

ensure_ownership() {

if git status 2>&1 | grep "fatal: detected dubious ownership in repository at" > /dev/null; then

git config --global --add safe.directory "${PWD}"

printf "${YELLOW}Detected dubious ownership in repository, mark ${PWD} safe using git, edit ~/.gitconfig if you want to reverse this.\n${NC}"

fi

}

[[ "$TOOL" == "aria2c" ]] && check_command aria2c

[[ "$TOOL" == "wget" ]] && check_command wget

check_command curl; check_command git; check_command git-lfs

[[ -z "$MODEL_ID" || "$MODEL_ID" =~ ^-h ]] && display_help

if [[ -z "$LOCAL_DIR" ]]; then

LOCAL_DIR="${MODEL_ID#*/}"code>

fi

if [[ "$DATASET" == 1 ]]; then

MODEL_ID="datasets/$MODEL_ID"code>

fi

echo "Downloading to $LOCAL_DIR"

if [ -d "$LOCAL_DIR/.git" ]; then

printf "${YELLOW}%s exists, Skip Clone.\n${NC}" "$LOCAL_DIR"

cd "$LOCAL_DIR" && ensure_ownership && GIT_LFS_SKIP_SMUDGE=1 git pull || { printf "${RED}Git pull failed.${NC}\n"; exit 1; }

else

REPO_URL="$HF_ENDPOINT/$MODEL_ID"code>

GIT_REFS_URL="${REPO_URL}/info/refs?service=git-upload-pack"code>

echo "Testing GIT_REFS_URL: $GIT_REFS_URL"

response=$(curl -s -o /dev/null -w "%{http_code}" "$GIT_REFS_URL")

if [ "$response" == "401" ] || [ "$response" == "403" ]; then

if [[ -z "$HF_USERNAME" || -z "$HF_TOKEN" ]]; then

printf "${RED}HTTP Status Code: $response.\nThe repository requires authentication, but --hf_username and --hf_token is not passed. Please get token from https://huggingface.co/settings/tokens.\nExiting.\n${NC}"

exit 1

fi

REPO_URL="https://$HF_USERNAME:$HF_TOKEN@${HF_ENDPOINT#https://}/$MODEL_ID"code>

elif [ "$response" != "200" ]; then

printf "${RED}Unexpected HTTP Status Code: $response\n${NC}"

printf "${YELLOW}Executing debug command: curl -v %s\nOutput:${NC}\n" "$GIT_REFS_URL"

curl -v "$GIT_REFS_URL"; printf "\n${RED}Git clone failed.\n${NC}"; exit 1

fi

echo "GIT_LFS_SKIP_SMUDGE=1 git clone $REPO_URL $LOCAL_DIR"

GIT_LFS_SKIP_SMUDGE=1 git clone $REPO_URL $LOCAL_DIR && cd "$LOCAL_DIR" || { printf "${RED}Git clone failed.\n${NC}"; exit 1; }

ensure_ownership

while IFS= read -r file; do

truncate -s 0 "$file"

done <<< $(git lfs ls-files | cut -d ' ' -f 3-)

fi

printf "\nStart Downloading lfs files, bash script:\ncd $LOCAL_DIR\n"

files=$(git lfs ls-files | cut -d ' ' -f 3-)

declare -a urls

while IFS= read -r file; do

url="$HF_ENDPOINT/$MODEL_ID/resolve/main/$file"code>

file_dir=$(dirname "$file")

mkdir -p "$file_dir"

if [[ "$TOOL" == "wget" ]]; then

download_cmd="wget -c \"$url\" -O \"$file\""code>

[[ -n "$HF_TOKEN" ]] && download_cmd="wget --header=\"Authorization: Bearer ${HF_TOKEN}\" -c \"$url\" -O \"$file\""code>

else

download_cmd="aria2c --console-log-level=error --file-allocation=none -x $THREADS -s $THREADS -k 1M -c \"$url\" -d \"$file_dir\" -o \"$(basename "$file")\""code>

[[ -n "$HF_TOKEN" ]] && download_cmd="aria2c --header=\"Authorization: Bearer ${HF_TOKEN}\" --console-log-level=error --file-allocation=none -x $THREADS -s $THREADS -k 1M -c \"$url\" -d \"$file_dir\" -o \"$(basename "$file")\""code>

fi

[[ -n "$INCLUDE_PATTERN" && ! "$file" == $INCLUDE_PATTERN ]] && printf "# %s\n" "$download_cmd" && continue

[[ -n "$EXCLUDE_PATTERN" && "$file" == $EXCLUDE_PATTERN ]] && printf "# %s\n" "$download_cmd" && continue

printf "%s\n" "$download_cmd"

urls+=("$url|$file")

done <<< "$files"

for url_file in "${urls[@]}"; do

IFS='|' read -r url file <<< "$url_file"code>

printf "${YELLOW}Start downloading ${file}.\n${NC}"

file_dir=$(dirname "$file")

if [[ "$TOOL" == "wget" ]]; then

[[ -n "$HF_TOKEN" ]] && wget --header="Authorization: Bearer ${HF_TOKEN}" -c "$url" -O "$file" || wget -c "$url" -O "$file"code>

else

[[ -n "$HF_TOKEN" ]] && aria2c --header="Authorization: Bearer ${HF_TOKEN}" --console-log-level=error --file-allocation=none -x $THREADS -s $THREADS -k 1M -c "$url" -d "$file_dir" -o "$(basename "$file")" || aria2c --console-log-level=error --file-allocation=none -x $THREADS -s $THREADS -k 1M -c "$url" -d "$file_dir" -o "$(basename "$file")"code>

fi

[[ $? -eq 0 ]] && printf "Downloaded %s successfully.\n" "$url" || { printf "${RED}Failed to download %s.\n${NC}" "$url"; exit 1; }

done

printf "${GREEN}Download completed successfully.\n${NC}"

方法二:模型下载【个人使用记录】

这个代码不能保持目录结构,见下面的改进版

import datetime

import os

import threading

from huggingface_hub import hf_hub_url

from huggingface_hub.hf_api import HfApi

from huggingface_hub.utils import filter_repo_objects

# 执行命令

def execCmd(cmd):

print("命令%s开始运行%s" % (cmd, datetime.datetime.now()))

os.system(cmd)

print("命令%s结束运行%s" % (cmd, datetime.datetime.now()))

if __name__ == '__main__':

# 需下载的hf库名称

repo_id = "Salesforce/blip2-opt-2.7b"

# 本地存储路径

save_path = './blip2-opt-2.7b'

# 获取项目信息

_api = HfApi()

repo_info = _api.repo_info(

repo_id=repo_id,

repo_type="model",code>

revision='main',code>

token=None,

)

# 获取文件信息

filtered_repo_files = list(

filter_repo_objects(

items=[f.rfilename for f in repo_info.siblings],

allow_patterns=None,

ignore_patterns=None,

)

)

cmds = []

threads = []

# 需要执行的命令列表

for file in filtered_repo_files:

# 获取路径

url = hf_hub_url(repo_id=repo_id, filename=file)

# 断点下载指令

cmds.append(f'wget -c { url} -P { save_path}')

print(cmds)

print("程序开始%s" % datetime.datetime.now())

for cmd in cmds:

th = threading.Thread(target=execCmd, args=(cmd,))

th.start()

threads.append(th)

for th in threads:

th.join()

print("程序结束%s" % datetime.datetime.now())

保持目录结构

import datetime

import os

import threading

from pathlib import Path

from huggingface_hub import hf_hub_url

from huggingface_hub.hf_api import HfApi

from huggingface_hub.utils import filter_repo_objects

# 执行命令

def execCmd(cmd):

print("命令%s开始运行%s" % (cmd, datetime.datetime.now()))

os.system(cmd)

print("命令%s结束运行%s" % (cmd, datetime.datetime.now()))

if __name__ == '__main__':

# 需下载的hf库名称

repo_id = "Salesforce/blip2-opt-2.7b"

# 本地存储路径

save_path = './blip2-opt-2.7b'

# 创建本地保存目录

Path(save_path).mkdir(parents=True, exist_ok=True)

# 获取项目信息

_api = HfApi()

repo_info = _api.repo_info(

repo_id=repo_id,

repo_type="model",code>

revision='main',code>

token=None,

)

# 获取文件信息

filtered_repo_files = list(

filter_repo_objects(

items=[f.rfilename for f in repo_info.siblings],

allow_patterns=None,

ignore_patterns=None,

)

)

cmds = []

threads = []

# 需要执行的命令列表

for file in filtered_repo_files:

# 获取路径

url = hf_hub_url(repo_id=repo_id, filename=file)

# 在本地创建子目录

local_file = os.path.join(save_path, file)

local_dir = os.path.dirname(local_file)

Path(local_dir).mkdir(parents=True, exist_ok=True)

# 断点下载指令

cmds.append(f'wget -c { url} -P { local_dir}')

print(cmds)

print("程序开始%s" % datetime.datetime.now())

for cmd in cmds:

th = threading.Thread(target=execCmd, args=(cmd,))

th.start()

threads.append(th)

for th in threads:

th.join()

print("程序结束%s" % datetime.datetime.now())

数据集下载

import datetime

import os

import threading

from pathlib import Path

from huggingface_hub import HfApi

from huggingface_hub.utils import filter_repo_objects

# 执行命令

def execCmd(cmd):

print("命令%s开始运行%s" % (cmd, datetime.datetime.now()))

os.system(cmd)

print("命令%s结束运行%s" % (cmd, datetime.datetime.now()))

if __name__ == '__main__':

# 需下载的数据集ID

dataset_id = "openai/webtext"

# 本地存储路径

save_path = './webtext'

# 创建本地保存目录

Path(save_path).mkdir(parents=True, exist_ok=True)

# 获取数据集信息

_api = HfApi()

dataset_info = _api.dataset_info(

dataset_id=dataset_id,

revision='main',code>

token=None,

)

# 获取文件信息

filtered_dataset_files = list(

filter_repo_objects(

items=[f.rfilename for f in dataset_info.siblings],

allow_patterns=None,

ignore_patterns=None,

)

)

cmds = []

threads = []

# 需要执行的命令列表

for file in filtered_dataset_files:

# 获取路径

url = dataset_info.get_file_url(file)

# 在本地创建子目录

local_file = os.path.join(save_path, file)

local_dir = os.path.dirname(local_file)

Path(local_dir).mkdir(parents=True, exist_ok=True)

# 断点下载指令

cmds.append(f'wget -c { url} -P { local_dir}')

print(cmds)

print("程序开始%s" % datetime.datetime.now())

for cmd in cmds:

th = threading.Thread(target=execCmd, args=(cmd,))

th.start()

threads.append(th)

for th in threads:

th.join()

print("程序结束%s" % datetime.datetime.now())

不足之处

不支持需要授权的库。

文件太多可能会开很多线程。


创作不易,观众老爷们请留步… 动起可爱的小手,点个赞再走呗 (๑◕ܫ←๑)

欢迎大家关注笔者,你的关注是我持续更博的最大动力

原创文章,转载告知,盗版必究



在这里插入图片描述


在这里插入图片描述

♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。