手把手教你使用Tensorflow2.7完成人脸识别系统,web人脸识别(Flask框架)+pyqt界面,保姆级教程

挂科边缘 2024-10-15 17:03:02 阅读 73


目录

前言一、系统总流程设计二、环境安装1. 创建虚拟环境2.安装其他库

报错了并解决的方法三、模型搭建1.采集数据集2. 数据预处理3.构建模型和训练

五、摄像头测试六、web界面搭建与pyqt界面搭建总结


前言

随着人工智能的不断发展,机器学习和深度学习这门技术也越来越重要,一时间成为码农的学习热点。下面将使用深度学习技术开发一个人脸识别系统。之前使用 Tensorflow1.5 完成人脸识别(之前版本的链接: 手把手教你完成深度学习人脸识别系统),现在更新到 Tensorflow2.7 版本,我已经改写完成了,更新内容如下:

加入 Flask 框架完成一个简单的 web 版人脸识别Tensorflow1.5 改成 Tensorflow 2.7数据预处理代码更加自动

下面直接展示结果吧:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


一、系统总流程设计

请添加图片描述

二、环境安装

<code>手把手教学视频:链接: link

建议所有库的版本跟我一样,以免出错

python=3.8

tensorflow==2.7(这个版本一定要跟我一样的)

1. 创建虚拟环境

conda create -n py38 python=3.8

激活环境

activate py38

2.安装其他库

(1)单独安装 pyqt5,命令如下

pip install pyqt5

(2)单独安装 tensorflow,要么安装 gpu 版本或者 cpu 版本,下面给出各自的安装教程

如果安装 gpu 版本,电脑必须有英伟达显卡,并且先安装对应版本的 cuda 和 cudnn,安装教程看这篇文章: cuda和cudnn的安装教程(全网最详细保姆级教程),我安装的 cuda 版本是11.3,cudnn 版本是 8.2,建议安装跟我一样,避免报错

安装完 cuda 和 cudnn 之后,输入如下命令来安装 tensorflow gpu 版本 :

pip install tensorflow_gpu==2.7.0

测试tensorflow gpu 是否能用,代码如下:

# -*- coding: utf-8 -*-

"""

@Auth : 挂科边缘

@File :Test.py

@IDE :PyCharm

@Motto:学习新思想,争做新青年

@Email :179958974@qq.com

"""

import tensorflow as tf

a = tf.test.is_built_with_cuda() # 判断CUDA是否可以用

b = tf.test.is_gpu_available(

cuda_only=False,

min_cuda_compute_capability=None

) # 判断GPU是否可以用

print(a)

print(b)

输出两个True证明能用,如下图所示

在这里插入图片描述

如果安装 cpu 版本就简单了,不用安装cuda和cudnn,直接输入下面命令安装就行,命令如下:

<code>pip install tensorflow-cpu==2.7.0

之后安装 requirements.txt 配置文件,命令如下:

pip install -r requirements.txt

在这里插入图片描述

安装完环境你已经成功一大把了,看到这里点个赞赞鼓励一下

报错了并解决的方法

报错:AttributeError: ‘str‘ object has no attribute ‘decode

降低h5py版本

解决方法:

pip install h5py==2.10.0


报错:ImportError: cannot import name ‘secure_filename’ from ‘werkzeug’

解决方法,进入到 flask_uploads.py 文件

在这里插入图片描述

把圈起来的代码改成下面的:

<code>from werkzeug.utils import secure_filename

from werkzeug.datastructures import FileStorage

在这里插入图片描述

三、模型搭建

1.采集数据集

使用摄像头进行采集

代码可以直接运行,getdata.py代码如下:

<code>注意:25行 cap = cv2.VideoCapture(1)的改为 cap = cv2.VideoCapture(0),0代表本电脑自带摄像头,1代码其他外接摄像头:

# encoding:utf-8

'''

功能: Python opencv调用摄像头获取个人图片

使用方法:

启动摄像头后需要借助键盘输入操作来完成图片的获取工作

c(change): 生成存储目录

p(photo): 执行截图

q(quit): 退出拍摄

'''

import os

import cv2

def cameraAutoForPictures(saveDir='data/'):code>

'''

调用电脑摄像头来自动获取图片

'''

if not os.path.exists(saveDir):

os.makedirs(saveDir)

count = 1

cap = cv2.VideoCapture(1)

width, height, w = 640, 480, 360

cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)

cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)

crop_w_start = (width - w) // 2

crop_h_start = (height - w) // 2

print('width: ', width)

print('height: ', height)

while True:

ret, frame = cap.read()

frame = frame[crop_h_start:crop_h_start + w, crop_w_start:crop_w_start + w]

frame = cv2.flip(frame, 1, dst=None)

cv2.imshow("capture", frame)

action = cv2.waitKey(1) & 0xFF

if action == ord('c'):

saveDir = input(u"请输入新的存储目录:")

if not os.path.exists(saveDir):

os.makedirs(saveDir)

elif action == ord('p'):

cv2.imwrite("%s/%d.jpg" % (saveDir, count), cv2.resize(frame, (224, 224), interpolation=cv2.INTER_AREA))

print(u"%s: %d 张图片" % (saveDir, count))

count += 1

if action == ord('q'):

break

cap.release()

cv2.destroyAllWindows()

if __name__ == '__main__':

# xxx替换为自己的名字

cameraAutoForPictures(saveDir=u'data/1/')

2. 数据预处理

代码可以直接运行,new_data_preparation.py代码如下:

# -*- coding: utf-8 -*-

"""

@Auth : 挂科边缘

@File :new_data_preparation.py

@IDE :PyCharm

@Motto:学习新思想,争做新青年

@Email :179958974@qq.com

"""

'''

功能: 图像的数据预处理、标准化部分

'''

import os

import cv2

import time

def readAllImg(path, *suffix):

'''

基于后缀读取文件

'''

resultArray = []

try:

for root, dirs, files in os.walk(path):

for file in files:

if endwith(file, suffix):

document = os.path.join(root, file)

img = cv2.imread(document)

resultArray.append((document, img))

except IOError:

print("Error")

else:

print("读取成功")

return resultArray

def endwith(s, *endstring):

'''

对字符串的后缀进行匹配

'''

return any(map(s.endswith, endstring))

def readPicSaveFace(sourcePath, objectPath, *suffix):

'''

图片标准化与存储

'''

if not os.path.exists(objectPath):

os.makedirs(objectPath)

try:

allImages = readAllImg(sourcePath, *suffix)

face_cascade = cv2.CascadeClassifier('config/haarcascade_frontalface_alt.xml')

count = 0

for document, img in allImages:

if img is not None:

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = face_cascade.detectMultiScale(gray, 1.3, 5)

for (x, y, w, h) in faces:

face = cv2.resize(gray[y:y + h, x:x + w], (200, 200))

# 创建与sourcePath子目录对应的objectPath子目录

relativePath = os.path.relpath(document, sourcePath)

subdir = os.path.dirname(relativePath)

saveDir = os.path.join(objectPath, subdir)

if not os.path.exists(saveDir):

os.makedirs(saveDir)

timestamp = str(int(time.time()))

fileName = f'{ timestamp}_{ count}.jpg'

cv2.imwrite(os.path.join(saveDir, fileName), face)

count += 1

except Exception as e:

print("Exception:", e)

else:

print(f'已处理 { count} 张人脸,保存到 { objectPath}')

if __name__ == '__main__':

print('数据处理开始!!!')

readPicSaveFace('data', 'dataset', '.jpg', '.JPG', '.png', '.PNG', '.tiff', '.TIFF')

3.构建模型和训练

代码可以直接运行,train_model.py代码如下:

keras搭建cnn网络模型提取人脸特征

# -*- coding: utf-8 -*-

"""

@Auth : 挂科边缘

@File :train_model.py

@IDE :PyCharm

@Motto:学习新思想,争做新青年

@Email :179958974@qq.com

"""

'''

功能: 构建人脸识别模型

'''

import os

import cv2

import random

import numpy as np

from tensorflow.keras.models import Sequential, load_model

from sklearn.model_selection import train_test_split

from tensorflow.keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flatten

from tensorflow.keras.utils import to_categorical

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

os.environ['CUDA_VISIBLE_DEVICES'] = '0'

class DataSet(object):

'''

用于存储和格式化读取训练数据的类

'''

def __init__(self, path):

'''

初始化

'''

self.num_classes = None

self.X_train = None

self.X_test = None

self.Y_train = None

self.Y_test = None

self.img_size = 128

self.extract_data(path)

def extract_data(self, path):

'''

抽取数据

'''

imgs, labels, counter = read_file(path)

X_train, X_test, y_train, y_test = train_test_split(imgs, labels, test_size=0.2, random_state=random.randint(0, 100))

X_train = X_train.reshape(X_train.shape[0], self.img_size, self.img_size, 1) / 255.0

X_test = X_test.reshape(X_test.shape[0], self.img_size, self.img_size, 1) / 255.0

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

Y_train = to_categorical(y_train, num_classes=counter)

Y_test = to_categorical(y_test, num_classes=counter)

self.X_train = X_train

self.X_test = X_test

self.Y_train = Y_train

self.Y_test = Y_test

self.num_classes = counter

def check(self):

'''

校验

'''

print('num of dim:', self.X_test.ndim)

print('shape:', self.X_test.shape)

print('size:', self.X_test.size)

print('num of dim:', self.X_train.ndim)

print('shape:', self.X_train.shape)

print('size:', self.X_train.size)

print(np.isnan(dataset.X_train).sum())

print(np.isnan(dataset.X_test).sum())

def endwith(s, *endstring):

'''

对字符串的后续和标签进行匹配

'''

resultArray = map(s.endswith, endstring)

if True in resultArray:

return True

else:

return False

def read_file(path):

'''

图片读取

'''

img_list = []

label_list = []

dir_counter = 0

IMG_SIZE = 128

for child_dir in os.listdir(path):

child_path = os.path.join(path, child_dir)

for dir_image in os.listdir(child_path):

if endwith(dir_image, 'jpg'):

img = cv2.imread(os.path.join(child_path, dir_image))

resized_img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))

recolored_img = cv2.cvtColor(resized_img, cv2.COLOR_BGR2GRAY)

img_list.append(recolored_img)

label_list.append(dir_counter)

dir_counter += 1

img_list = np.array(img_list)

return img_list, label_list, dir_counter

def read_name_list(path):

'''

读取训练数据集

'''

name_list = []

for child_dir in os.listdir(path):

name_list.append(child_dir)

return name_list

class Model(object):

'''

人脸识别模型

'''

FILE_PATH = "./models/face.h5"

IMAGE_SIZE = 128

def __init__(self):

self.model = None

def read_trainData(self, dataset):

self.dataset = dataset

def build_model(self):

self.model = Sequential()

self.model.add(

Conv2D(

filters=32,

kernel_size=(5, 5),

padding='same',code>

input_shape=self.dataset.X_train.shape[1:]

)

)

self.model.add(Activation('relu'))

self.model.add(

MaxPooling2D(

pool_size=(2, 2),

strides=(2, 2),

padding='same'code>

)

)

self.model.add(Conv2D(filters=64, kernel_size=(5, 5), padding='same'))code>

self.model.add(Activation('relu'))

self.model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))code>

self.model.add(Flatten())

self.model.add(Dense(1024))

self.model.add(Activation('relu'))

self.model.add(Dense(self.dataset.num_classes))

self.model.add(Activation('softmax'))

self.model.summary()

def train_model(self,epochs,batch_size):

self.model.compile(

optimizer='sgd',code>

loss='categorical_crossentropy',code>

metrics=['accuracy'])

self.model.fit(self.dataset.X_train, self.dataset.Y_train, epochs=epochs, batch_size=batch_size)

def evaluate_model(self):

print('\nTesting---------------')

loss, accuracy = self.model.evaluate(self.dataset.X_test, self.dataset.Y_test)

print('test loss:', loss)

print('test accuracy:', accuracy)

def save(self, file_path=FILE_PATH):

print('Model Saved Finished!!!')

self.model.save(file_path)

def load(self, file_path=FILE_PATH):

print('Model Loaded Successful!!!')

self.model = load_model(file_path)

def predict(self, img):

img = img.reshape((1, self.IMAGE_SIZE, self.IMAGE_SIZE, 1))

img = img.astype('float32')

img = img / 255.0

result = self.model.predict(img)

max_index = np.argmax(result)

return max_index, result[0][max_index]

if __name__ == '__main__':

dataset = DataSet('dataset/')

model = Model()

model.read_trainData(dataset)

model.build_model()

model.train_model(epochs=10,batch_size=32)

model.evaluate_model()

model.save()

五、摄像头测试

代码可以直接运行,Demo.py代码如下:

new_names 对应文件夹人脸的顺序

#encoding:utf-8

from __future__ import division

import numpy

'''

功能: 人脸识别摄像头视频流数据实时检测模块

'''

from PIL import Image, ImageDraw, ImageFont

import os

import cv2

from train_model import Model

threshold=0.7 # 如果模型认为概率高于70%则显示为模型中已有的人物

# 新的名字列表

new_names = ["张三", "李四"]

# 解决cv2.putText绘制中文乱码

def cv2ImgAddText(img2, text, left, top, textColor=(0, 0, 255), textSize=20):

if isinstance(img2, numpy.ndarray): # 判断是否OpenCV图片类型

img2 = Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))

# 创建一个可以在给定图像上绘图的对象

draw = ImageDraw.Draw(img2)

# 字体的格式

fontStyle = ImageFont.truetype(r"C:\WINDOWS\FONTS\MSYH.TTC", textSize, encoding="utf-8")code>

# 绘制文本

draw.text((left, top), text, textColor, font=fontStyle)

# 转换回OpenCV格式

return cv2.cvtColor(numpy.asarray(img2), cv2.COLOR_RGB2BGR)

class Camera_reader(object):

def __init__(self):

self.model=Model()

self.model.load()

self.img_size=128

def build_camera(self):

'''

调用摄像头来实时人脸识别

'''

face_cascade = cv2.CascadeClassifier('config/haarcascade_frontalface_alt.xml')

cameraCapture=cv2.VideoCapture(0)

success, frame=cameraCapture.read()

while success and cv2.waitKey(1)==-1:

success,frame=cameraCapture.read()

gray=cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

faces=face_cascade.detectMultiScale(gray, 1.3, 5)

for (x,y,w,h) in faces:

ROI=gray[x:x+w,y:y+h]

ROI=cv2.resize(ROI, (self.img_size, self.img_size),interpolation=cv2.INTER_LINEAR)

label,prob=self.model.predict(ROI)

print(label)

if prob > threshold:

show_name = new_names[label]

else:

show_name = "陌生人"

# cv2.putText(frame, show_name, (x,y-20),cv2.FONT_HERSHEY_SIMPLEX,1,255,2)

# 在图像上绘制中文字符

# 解决cv2.putText绘制中文乱码

frame = cv2ImgAddText(frame, show_name, x + 5, y - 30,)

frame=cv2.rectangle(frame,(x,y), (x+w,y+h),(255,0,0),2)

cv2.imshow("Camera", frame)

else:

cameraCapture.release()

cv2.destroyAllWindows()

if __name__ == '__main__':

camera=Camera_reader()

camera.build_camera()

六、web界面搭建与pyqt界面搭建

web 界面采用 Flask 框架,主要实现图片识别功能,运行MainWeb.py即可在浏览器访问了,地址是:http://127.0.0.1:5000/upload

MainWeb.py代码如下:

# -*- coding: utf-8 -*-

"""

@Auth : 挂科边缘

@File :Test.py

@IDE :PyCharm

@Motto:学习新思想,争做新青年

@Email :179958974@qq.com

@qq :179958974

"""

import os

import time

import cv2

import numpy as np

from PIL import Image, ImageDraw, ImageFont

from flask import Flask, request, redirect, url_for, render_template

from flask_uploads import UploadSet, IMAGES, configure_uploads

from train_model import Model

app = Flask(__name__)

# 配置 Flask 文件上传

# 注意这里的配置名称与上传集 'photos' 的名称一致

app.config['UPLOADED_PHOTOS_DEST'] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'uploads')

app.config['UPLOADED_PHOTOS_ALLOW'] = IMAGES

photos = UploadSet('photos', IMAGES)

configure_uploads(app, photos)

# 人脸识别的标签(名字列表)

new_names = ["张国荣", "王祖贤", "彭于晏", "特狼普", "章子怡"]

# 加载人脸检测模型

face_cascade = cv2.CascadeClassifier('config/haarcascade_frontalface_alt.xml')

# 解决cv2.putText绘制中文乱码的问题

def cv2ImgAddText(img, text, left, top, textColor=(0, 0, 255), textSize=20):

if isinstance(img, np.ndarray):

img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

draw = ImageDraw.Draw(img)

fontStyle = ImageFont.truetype(r"C:\WINDOWS\FONTS\MSYH.TTC", textSize, encoding="utf-8")code>

draw.text((left, top), text, textColor, font=fontStyle)

return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)

def detectOnePicture(path):

'''

单图识别

'''

model = Model()

model.load()

# 读取图像并转换为灰度图

img = cv2.imread(path)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 检测人脸

faces = face_cascade.detectMultiScale(

gray,

scaleFactor=1.15, # 调整比例因子

minNeighbors=5, # 保持默认值

#minSize=(100, 100) # 设置较大的最小检测尺寸

)

if len(faces) == 0:

return "抱歉,未检测到人脸!"

for (x, y, w, h) in faces:

roi = gray[y:y + h, x:x + w]

roi = cv2.resize(roi, (128, 128), interpolation=cv2.INTER_LINEAR)

label, prob = model.predict(roi)

if prob > 0.5:

show_name = f"{ new_names[label]} ({ prob:.2f})"

res = f"识别为: { new_names[label]} 的概率为: { prob:.2f}"

else:

res = "抱歉,未识别出该人!请尝试增加数据量来训练模型!"

img = cv2ImgAddText(img, show_name, x + 5, y - 30)

cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

cv2.imwrite(path, img)

print(res)

return res

@app.route('/upload', methods=['POST', 'GET'])

def upload():

if request.method == 'POST' and 'photo' in request.files:

filename = photos.save(request.files['photo'])

return redirect(url_for('show', name=filename))

return render_template('upload.html')

@app.route('/photo/<name>')

def show(name):

if not name:

print('出错了!')

return redirect(url_for('upload'))

file_path = os.path.join(app.config['UPLOADED_PHOTOS_DEST'], name)

if not os.path.exists(file_path):

return f"文件 { name} 不存在", 404

start_time = time.time()

res = detectOnePicture(file_path)

end_time = time.time()

execute_time = round(end_time - start_time, 2)

tsg = f'总耗时为: { execute_time} 秒'

url = photos.url(name)

return render_template('show.html', url=url, name=name, xinxi=res, shijian=tsg)

if __name__ == "__main__":

if not os.path.exists(app.config['UPLOADED_PHOTOS_DEST']):

os.makedirs(app.config['UPLOADED_PHOTOS_DEST'])

print('Face Recognition Demo')

app.run(debug=True)

pyqt5 搭建可视化界面,实现图片识别和摄像头识别

完整代码如下

注意注意注意:在代码中的 cap = cv2.VideoCapture(1) 需要改为 cap = cv2.VideoCapture(0),0代表本电脑自带摄像头,1代码其他外接摄像头,因为我用的外接摄像头所示写 1,大家没有的话改成 0:

import os

import sys

import cv2

import numpy

from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton, QVBoxLayout, QWidget, QFileDialog

from PyQt5.QtGui import QPixmap, QImage

from PyQt5.QtCore import Qt

from PIL import Image, ImageDraw, ImageFont

from Demo import Camera_reader

from train_model import Model

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

os.environ['CUDA_VISIBLE_DEVICES'] = '0'

# 解决cv2.putText绘制中文乱码

def cv2ImgAddText(img2, text, left, top, textColor=(0, 0, 255), textSize=20):

if isinstance(img2, numpy.ndarray):

img2 = Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))

draw = ImageDraw.Draw(img2)

fontStyle = ImageFont.truetype(r"C:\WINDOWS\FONTS\MSYH.TTC", textSize, encoding="utf-8")code>

draw.text((left, top), text, textColor, font=fontStyle)

return cv2.cvtColor(numpy.asarray(img2), cv2.COLOR_RGB2BGR)

# 新的名字列表

new_names = ["张国荣", "王祖贤","彭于晏","特狼普","章子怡"]

class FaceDetectionApp(QMainWindow):

def __init__(self, parent=None):

super().__init__(parent)

self.setWindowTitle("人脸检测应用")

self.setGeometry(100, 100, 800, 600)

self.central_widget = QWidget()

self.setCentralWidget(self.central_widget)

self.layout = QVBoxLayout()

self.upload_button = QPushButton("图片识别")

self.upload_button.clicked.connect(self.upload_image)

self.upload_button.setFixedSize(779, 50)

self.camera_button = QPushButton("摄像头识别")

self.camera_button.clicked.connect(self.start_camera_detection)

self.camera_button.setFixedSize(779, 50)

self.image_label = QLabel()

self.image_label.setAlignment(Qt.AlignCenter)

self.image_label.setFixedSize(779, 500)

self.result_label = QLabel("识别结果: ")

self.result_label.setAlignment(Qt.AlignCenter)

self.layout.addWidget(self.upload_button)

self.layout.addWidget(self.camera_button)

self.layout.addWidget(self.image_label)

self.layout.addWidget(self.result_label)

self.central_widget.setLayout(self.layout)

self.model = Model()

self.model.load()

def upload_image(self):

options = QFileDialog.Options()

options |= QFileDialog.ReadOnly

file_name, _ = QFileDialog.getOpenFileName(self, "选择图片", "", "Images (*.png *.jpg *.jpeg *.bmp *.gif *.tiff)", options=options)

if file_name:

image = cv2.imread(file_name)

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

face_cascade = cv2.CascadeClassifier('config/haarcascade_frontalface_alt.xml')

faces = (face_cascade.detectMultiScale(

gray,

scaleFactor=1.15, # 较小的比例因子

minNeighbors=5, # 保持默认值

#minSize=(100, 100) # 设置较大的最小检测尺寸

)# (gray, 1.35, 5)

)

if len(faces) > 0:

for (x, y, w, h) in faces:

roi = gray[y:y + h, x:x + w]

roi = cv2.resize(roi, (128, 128), interpolation=cv2.INTER_LINEAR)

label, prob = self.model.predict(roi)

if prob > 0.5:

show_name = new_names[label]

res = f"识别为: { show_name}, 概率: { prob:.2f}"

else:

show_name = "陌生人"

res = "抱歉,未识别出该人!请尝试增加数据量来训练模型!"

frame = cv2ImgAddText(image, show_name, x + 5, y - 30)

cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)

cv2.imwrite('prediction.jpg', frame)

self.result = cv2.cvtColor(frame, cv2.COLOR_BGR2BGRA)

self.QtImg = QImage(

self.result.data, self.result.shape[1], self.result.shape[0], QImage.Format_RGB32)

self.image_label.setPixmap(QPixmap.fromImage(self.QtImg))

self.image_label.setScaledContents(True) # 自适应界面大小

self.result_label.setText(res)

else:

self.result_label.setText("未检测到人脸")

def start_camera_detection(self):

self.camera = Camera_reader()

self.camera.build_camera()

class Camera_reader(object):

def __init__(self):

self.model = Model()

self.model.load()

self.img_size = 128

def build_camera(self):

face_cascade = cv2.CascadeClassifier('config/haarcascade_frontalface_alt.xml')

cameraCapture = cv2.VideoCapture(0)

success, frame = cameraCapture.read()

while success and cv2.waitKey(1) == -1:

success, frame = cameraCapture.read()

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

faces = (face_cascade.detectMultiScale(

gray,

scaleFactor=1.05, # 较小的比例因子

minNeighbors=5, # 保持默认值

#minSize=(100, 100) # 设置较大的最小检测尺寸

)

)

for (x, y, w, h) in faces:

ROI = gray[x:x + w, y:y + h]

ROI = cv2.resize(ROI, (self.img_size, self.img_size), interpolation=cv2.INTER_LINEAR)

label, prob = self.model.predict(ROI)

if prob > 0.7:

show_name = new_names[label]

else:

show_name = "陌生人"

frame = cv2ImgAddText(frame, show_name, x + 5, y - 30)

frame = cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)

cv2.imshow("Camera", frame)

else:

cameraCapture.release()

cv2.destroyAllWindows()

if __name__ == "__main__":

app = QApplication(sys.argv)

window = FaceDetectionApp()

window.show()

sys.exit(app.exec_())

总结

完整源码+数据集+模型,地址: 源码下载

提取码: kagm

本文通过opencv+cnn网络模型结合实现人脸识别,opencv实现人脸识别,cnn实现人脸的特征提取,并识别是某个人,cnn模型有待优化,你们可以自己需求更换其它的深度学习模型,增加训练数据集样本,实现更精准的人脸识别模型,有问题评论区留言,谢谢观看

博主熬夜写博客写代码,已经掉一大把头发了,麻烦点个赞赞鼓励一下

在这里插入图片描述



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。