Gradio 最快创建Web 界面部署到服务器并演示机器学习模型,本文提供教学案例以及部署方法,避免使用繁琐的django

热爱生活的五柒 2024-06-26 10:03:04 阅读 95

最近学习hugging face里面的物体检测模型,发现一个方便快捷的工具!

Gradio 是通过友好的 Web 界面演示机器学习模型的最快方式,以便任何人都可以在任何地方使用它!

一、核心优势:

使用这个开发这种演示机器学习模型的web界面会比django会快上不少!
只需要一个py文件即可实现模型界面创建,部署模型到服务器及时间响应所有功能。

二、重要参考连接:

官网如下:

Gradio

别人的部署到hugging face的space服务器案例如下:(可全网任意访问-)

https://huggingface.co/spaces/ClassCat/DETR-Object-Detection

案例对应的代码如下:

https://huggingface.co/spaces/ClassCat/DETR-Object-Detection/tree/main

三、自己本地服务器部署的案例

自己的物检测及体识别的代码(亲测成功):

import torch

from transformers import pipeline

from PIL import Image

import matplotlib.pyplot as plt

import matplotlib.patches as patches

from random import choice

import io

detector50 = pipeline(model="facebook/detr-resnet-50")#自动下载模型,大约200MB

# detector101 = pipeline(model="facebook/detr-resnet-101")

import gradio as gr

COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",

"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",

"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]

fdic = {

"family" : "Arial",

"style" : "italic",

"size" : 15,

"color" : "yellow",

"weight" : "bold"

}

def get_figure(in_pil_img, in_results):

plt.figure(figsize=(16, 10))

plt.imshow(in_pil_img)

#pyplot.gcf()

ax = plt.gca()

for prediction in in_results:

selected_color = choice(COLORS)

x, y = prediction['box']['xmin'], prediction['box']['ymin'],

w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']

ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))

ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic)

plt.axis("off")

return plt.gcf()

def infer(model, in_pil_img):

results = None

if model == "detr-resnet-101":

results = detector101(in_pil_img)

else:

results = detector50(in_pil_img)

figure = get_figure(in_pil_img, results)

buf = io.BytesIO()

figure.savefig(buf, bbox_inches='tight')

buf.seek(0)

output_pil_img = Image.open(buf)

return output_pil_img

with gr.Blocks(title="DETR Object Detection - ClassCat",

css=".gradio-container {background:lightyellow;}"

) as demo:

#sample_index = gr.State([])

gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">DETR Object Detection</div>""")

gr.HTML("""<h4 style="color:navy;">1. Select a model.</h4>""")

model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Model name")

gr.HTML("""<br/>""")

gr.HTML("""<h4 style="color:navy;">2-a. Select an example by clicking a thumbnail below.</h4>""")

gr.HTML("""<h4 style="color:navy;">2-b. Or upload an image by clicking on the canvas.</h4>""")

with gr.Row():

input_image = gr.Image(label="Input image", type="pil")

output_image = gr.Image(label="Output image with predicted instances", type="pil")

gr.Examples(['samples/cats.jpg', 'samples/detectron2.png'], inputs=input_image)

gr.HTML("""<br/>""")

gr.HTML("""<h4 style="color:navy;">3. Then, click "Infer" button to predict object instances. It will take about 10 seconds (on cpu)</h4>""")

send_btn = gr.Button("Infer")

send_btn.click(fn=infer, inputs=[model, input_image], outputs=[output_image])

gr.HTML("""<br/>""")

gr.HTML("""<h4 style="color:navy;">Reference参考链接</h4>""")

gr.HTML("""<ul>""")

gr.HTML("""<li><a href="https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb" target="_blank">Hands-on tutorial for DETR</a>""")

gr.HTML("""</ul>""")

#demo.queue()

demo.launch(debug=True)

界面及功能都正常,展示如下:

tips1:运行上述代码,如果报代理错误:

在终端使用如下代码再重新启动jupyter-noterbook,使用下面命令即可解决:

(base) jie@dell:~/桌面$ unset all_proxy; unset ALL_PROXY

tip2:如果拖动自己的图片在预测框显示错误,原因是点击预测太快了。需要等图片上传完后点预测才能成功,点太快会出现错误两字。不限制图片尺寸。

四、入门gradio案例:

import gradio as gr

def greet(name):

return "Hello " + name + "!"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")

demo.launch()

实现对姓名打招呼的功能,本地服务器的界面如下:

四、尝试在远程服务器上搭建(重要)

本人项目链接:https://huggingface.co/spaces/wuqi57/facebook-detr-resnet-50

在远程服务器上需要下载包和上传模型文件,官方提供了api:

https://huggingface.co/facebook/detr-resnet-50/tree/main?inference_api=true

以及打包好的space环境 

https://huggingface.co/facebook/detr-resnet-50/tree/main?space_deploy=true

上面两种方式就可以直接使用,直接创建一个app.py文件就可以运行,避免了上传大量的模型文件和下载相应的库。(实例见本人上面的项目链接)



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。