训练YOLOv9-S(注意:官方还没有提供YOLOv9-S的网络,我这是根据网络博客进行的步骤,按照0.33、0.50比例调整网络大小,参数量15.60M,计算量67.7GFLOPs)

孟孟单单 2024-06-24 08:37:02 阅读 59

文章目录

1、自己动手制造一个YOLOv9-S网络结构1.1 改前改后的网络结构(参数量、计算量)对比1.2 一些发现,YOLOv9代码打印的参数量计算量和Github上提供的并不一致,甚至yolov9-c.yaml代码打印出来是Github的两倍1.3 开始创造YOLOv9-S 2、开始训练3、验证3.1 修改val.py中的以下参数3.2 命令验证

1、自己动手制造一个YOLOv9-S网络结构

重点参考的链接:YOLOv9改进 | 提供YOLOv9全系列支持YOLOv9n、YOLOv9s、V9m、V9l、V9x的修改方式(全网独家首发)

1.1 改前改后的网络结构(参数量、计算量)对比

改前的yolov9.yaml参数量58.35M,计算量267.1GFLOPs

改后的yolov9-S.yaml参数量15.60M,计算量67.7GFLOPs

这是修改调用的yolo.py测试的yolov9.yaml的打印网络情况,包含参数量、计算量

在这里插入图片描述

这是修改调用的yolo.py测试的yolov9-S-lwd.yaml的打印网络情况,包含参数量、计算量

在这里插入图片描述

1.2 一些发现,YOLOv9代码打印的参数量计算量和Github上提供的并不一致,甚至yolov9-c.yaml代码打印出来是Github的两倍

在这里插入图片描述

1.3 开始创造YOLOv9-S

models/yolo.py文件中,Ctrl+F定位到args = [c1, c2, *args[1:]],然后再如下位置添加代码

在这里插入图片描述

# --------------------------添加的代码--------------------------- # if m in (RepNCSPELAN4,): args[1] = make_divisible(args[1] * gw, 8) args[2] = make_divisible(args[2] * gw, 8) args[3] = max(round(args[3] * gd), 1) if n > 1 else n # --------------------------添加的代码--------------------------- # 还是在models/yolo.py中,定位到elif m is CBLinear,然后做如下更改

在这里插入图片描述

c2 = [int(x * gw) for x in args[0]] 修改模型配置文件:直接拷贝models/detect/yolov9.yaml然后重命名为yolov9-S.yaml,并做以下更改

在这里插入图片描述

2、开始训练

根据需求修改train.py中的以下参数:

在这里插入图片描述

需要注意的是,这里只能写成这样,因为官方只给了这一个超参数设置文件:

在这里插入图片描述

键入以下命令开始训练:

python train.py --name yolov9-S

在这里插入图片描述

报错了

在这里插入图片描述

⭐然后就根据这个博客yolov9训练自己的数据集+验证+报错修改里面参考的YOLOV9保姆级教程,在utils/loss_tal.py中进行了如下修改:

在这里插入图片描述

Okay!开始训练,坐等结果~

在这里插入图片描述

保姆级的大佬真的好啊,给我的回答很详细,贴上来!

在这里插入图片描述

3、验证

3.1 修改val.py中的以下参数

在这里插入图片描述

另外为了多显示几位精度,在val.py中进行如下更改:

在这里插入图片描述

3.2 命令验证

python val.py --name yolov9-S

报错:AttributeError: 'list' object has no attribute 'device'

在这里插入图片描述

解决方案:

在这里插入图片描述

验证结果:

在这里插入图片描述



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。