【树上倍增】【割点】 【换根法】3067. 在带权树网络中统计可连接服务器对数目

CSDN 2024-06-29 10:07:05 阅读 83

作者推荐

视频算法专题

本文涉及知识点

树上倍增 树 图论 并集查找 换根法 深度优先

割点原理及封装好的割点类(预计2024年3月11号左右发布)

LeetCode3067. 在带权树网络中统计可连接服务器对数目

给你一棵无根带权树,树中总共有 n 个节点,分别表示 n 个服务器,服务器从 0 到 n - 1 编号。同时给你一个数组 edges ,其中 edges[i] = [ai, bi, weighti] 表示节点 ai 和 bi 之间有一条双向边,边的权值为 weighti 。再给你一个整数 signalSpeed 。

如果两个服务器 a ,b 和 c 满足以下条件,那么我们称服务器 a 和 b 是通过服务器 c 可连接的 :

a < b ,a != c 且 b != c 。

从 c 到 a 的距离是可以被 signalSpeed 整除的。

从 c 到 b 的距离是可以被 signalSpeed 整除的。

从 c 到 b 的路径与从 c 到 a 的路径没有任何公共边。

请你返回一个长度为 n 的整数数组 count ,其中 count[i] 表示通过服务器 i 可连接 的服务器对的 数目 。

示例 1:

在这里插入图片描述

输入:edges = [[0,1,1],[1,2,5],[2,3,13],[3,4,9],[4,5,2]], signalSpeed = 1

输出:[0,4,6,6,4,0]

解释:由于 signalSpeed 等于 1 ,count[c] 等于所有从 c 开始且没有公共边的路径对数目。

在输入图中,count[c] 等于服务器 c 左边服务器数目乘以右边服务器数目。

示例 2:

在这里插入图片描述

输入:edges = [[0,6,3],[6,5,3],[0,3,1],[3,2,7],[3,1,6],[3,4,2]], signalSpeed = 3

输出:[2,0,0,0,0,0,2]

解释:通过服务器 0 ,有 2 个可连接服务器对(4, 5) 和 (4, 6) 。

通过服务器 6 ,有 2 个可连接服务器对 (4, 5) 和 (0, 5) 。

所有服务器对都必须通过服务器 0 或 6 才可连接,所以其他服务器对应的可连接服务器对数目都为 0 。

提示:

2 <= n <= 1000

edges.length == n - 1

edges[i].length == 3

0 <= ai, bi < n

edges[i] = [ai, bi, weighti]

1 <= weighti <= 106

1 <= signalSpeed <= 106

输入保证 edges 构成一棵合法的树。

树上倍增

本题有三个考点:

一,如何计算树上两个节点x1,x2的距离。

假定这两个节点的最早公共祖先是pub。以任意节点root为根,f(x)表示节点x到root的距离。

x1到x2的距离:f(x1)+f(x2)-2*f(pub)。

二,如何找到最早公共祖先:树上倍增。

记录各节点的1级祖先(父节点)、2级祖先、4级祖先…

三,如果判断ac和bc有公共边。

树是连通无向无环图,因为无环,所以两个节点的路径唯一。

假设公共边是x3x4。则x3到c的路径唯一,假定x3到c的倒数第二个端点是x5,则ab和bc的最后一条边都是

x

3

c

\overrightarrow{x3c}

x3c

。断开所以和c相连的边,如果a和b在同一个连通区域,则有公共边。用并查集看是否在同一个连通区域。

时间复杂度: O(nnlogn)。 枚举c,时间复杂度O(n);枚举ab,时间复杂度O(n)。查公共路径O(logn)。

并集查找

class CNeiBo

{

public:

static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)

{

vector<vector<int>> vNeiBo(n);

for (const auto& v : edges)

{

vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);

if (!bDirect)

{

vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);

}

}

return vNeiBo;

}

static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)

{

vector<vector<std::pair<int, int>>> vNeiBo(n);

for (const auto& v : edges)

{

vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);

if (!bDirect)

{

vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);

}

}

return vNeiBo;

}

};

class CUnionFind

{

public:

CUnionFind(int iSize) :m_vNodeToRegion(iSize)

{

for (int i = 0; i < iSize; i++)

{

m_vNodeToRegion[i] = i;

}

m_iConnetRegionCount = iSize;

}

CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size())

{

for (int i = 0; i < vNeiBo.size(); i++) {

for (const auto& n : vNeiBo[i]) {

Union(i, n);

}

}

}

int GetConnectRegionIndex(int iNode)

{

int& iConnectNO = m_vNodeToRegion[iNode];

if (iNode == iConnectNO)

{

return iNode;

}

return iConnectNO = GetConnectRegionIndex(iConnectNO);

}

void Union(int iNode1, int iNode2)

{

const int iConnectNO1 = GetConnectRegionIndex(iNode1);

const int iConnectNO2 = GetConnectRegionIndex(iNode2);

if (iConnectNO1 == iConnectNO2)

{

return;

}

m_iConnetRegionCount--;

if (iConnectNO1 > iConnectNO2)

{

UnionConnect(iConnectNO1, iConnectNO2);

}

else

{

UnionConnect(iConnectNO2, iConnectNO1);

}

}

bool IsConnect(int iNode1, int iNode2)

{

return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);

}

int GetConnetRegionCount()const

{

return m_iConnetRegionCount;

}

vector<int> GetNodeCountOfRegion()//各联通区域的节点数量

{

const int iNodeSize = m_vNodeToRegion.size();

vector<int> vRet(iNodeSize);

for (int i = 0; i < iNodeSize; i++)

{

vRet[GetConnectRegionIndex(i)]++;

}

return vRet;

}

std::unordered_map<int, vector<int>> GetNodeOfRegion()

{

std::unordered_map<int, vector<int>> ret;

const int iNodeSize = m_vNodeToRegion.size();

for (int i = 0; i < iNodeSize; i++)

{

ret[GetConnectRegionIndex(i)].emplace_back(i);

}

return ret;

}

private:

void UnionConnect(int iFrom, int iTo)

{

m_vNodeToRegion[iFrom] = iTo;

}

vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引

int m_iConnetRegionCount;

};

class CParents

{

public:

CParents(vector<int>& vParent, const vector<int>& vLeve):m_vLeve(vLeve)

{

const int iMaxLeve = *std::max_element(vLeve.begin(), vLeve.end());

int iBitNum = 0;

for (; (1 << iBitNum) < iMaxLeve; iBitNum++);

const int n = vParent.size();

m_vParents.assign(iBitNum+1, vector<int>(n, -1));

m_vParents[0] = vParent;

//树上倍增

for (int i = 1; i < m_vParents.size(); i++)

{

for (int j = 0; j < n; j++)

{

const int iPre = m_vParents[i - 1][j];

if (-1 != iPre)

{

m_vParents[i][j] = m_vParents[i - 1][iPre];

}

}

}

}

int GetParent(int iNode, int iLeve)const

{

int iParent = iNode;

for (int iBit = 0; iBit < m_vParents.size(); iBit++)

{

if (-1 == iParent)

{

return iParent;

}

if (iLeve & (1 << iBit))

{

iParent = m_vParents[iBit][iParent];

}

}

return iParent;

}

int GetPublicParent(int iNode1, int iNode2)const

{

int leve0 = m_vLeve[iNode1];

int leve1 = m_vLeve[iNode2];

if (leve0 < leve1)

{

iNode2 = GetParent(iNode2, leve1 - leve0);

leve1 = leve0;

}

else

{

iNode1 = GetParent(iNode1, leve0 - leve1);

leve0 = leve1;

}

//二分查找

int left = -1, r = leve0;

while (r - left > 1)

{

const auto mid = left + (r - left) / 2;

const int iParent0 = GetParent(iNode1, mid);

const int iParent1 = GetParent(iNode2, mid);

if (iParent0 == iParent1)

{

r = mid;

}

else

{

left = mid;

}

}

return GetParent(iNode1, r);

}

protected:

vector<vector<int>> m_vParents;

const vector<int> m_vLeve;

};

class Solution {

public:

vector<int> countPairsOfConnectableServers(vector<vector<int>>& edges, int signalSpeed) {

m_c = edges.size() + 1;

m_vDisToRoot.resize(m_c);

m_vParent.resize(m_c);

m_vLeve.resize(m_c);

auto neiBo = CNeiBo::Three(m_c, edges, false, 0);

DFS(neiBo, 0, -1, 0,0);

CParents par(m_vParent,m_vLeve);

vector<int> vRet(m_c);

for (int c = 0; c < m_c; c++)

{

CUnionFind uf(m_c);

for (const auto& v : edges)

{

if ((v[0] == c) || (v[1] == c))

{

continue;

}

uf.Union(v[0], v[1]);

}

vector<int> vRegionCnt(m_c);

for (int ab = 0; ab < m_c; ab++)

{

if (ab == c )

{

continue;

}

const int pub = par.GetPublicParent(ab, c);

const int len = m_vDisToRoot[ab] + m_vDisToRoot[c] - 2 * m_vDisToRoot[pub];

if (0 != len % signalSpeed)

{

continue;

}

vRegionCnt[uf.GetConnectRegionIndex(ab)]++;

}

int&iRet = vRet[c];

const int total = std::accumulate(vRegionCnt.begin(), vRegionCnt.end(), 0);

for (int c1 = 0; c1 < m_c; c1++)

{

iRet += vRegionCnt[c1] * (total - vRegionCnt[c1]);

}

iRet /= 2;

}

return vRet;

}

void DFS(vector<vector<std::pair<int, int>>>& neiBo, int cur, int par,int leve,int dis)

{

m_vDisToRoot[cur] =dis;

m_vParent[cur] = par;

m_vLeve[cur] = leve;

for (const auto& [next,len] : neiBo[cur])

{

if (next == par)

{

continue;

}

DFS(neiBo, next, cur,leve+1,dis+len);

}

}

vector<int> m_vDisToRoot,m_vParent,m_vLeve;

int m_c;

};

测试用例

template<class T,class T2>

void Assert(const T& t1, const T2& t2)

{

assert(t1 == t2);

}

template<class T>

void Assert(const vector<T>& v1, const vector<T>& v2)

{

if (v1.size() != v2.size())

{

assert(false);

return;

}

for (int i = 0; i < v1.size(); i++)

{

Assert(v1[i], v2[i]);

}

}

int main()

{

vector<vector<int>> edges;

int signalSpeed;

{

Solution sln;

edges = { }, signalSpeed = 1;

auto res = sln.countPairsOfConnectableServers(edges, signalSpeed);

Assert({ 0 }, res);

}

{

Solution sln;

edges = { { 0,1,1} }, signalSpeed = 1;

auto res = sln.countPairsOfConnectableServers(edges, signalSpeed);

Assert({ 0,0 }, res);

}

{

Solution sln;

edges = { { 0,1,1},{ 1,2,1} }, signalSpeed = 1;

auto res = sln.countPairsOfConnectableServers(edges, signalSpeed);

Assert({ 0,1,0 }, res);

}

{

Solution sln;

edges = { { 0,1,1},{ 1,2,5},{ 2,3,13},{ 3,4,9},{ 4,5,2} }, signalSpeed = 1;

auto res = sln.countPairsOfConnectableServers(edges, signalSpeed);

Assert({ 0,4,6,6,4,0 } , res);

}

{

Solution sln;

edges = { { 0,6,3},{ 6,5,3},{ 0,3,1},{ 3,2,7},{ 3,1,6},{ 3,4,2} }, signalSpeed = 3;

auto res = sln.countPairsOfConnectableServers(edges, signalSpeed);

Assert({ 2,0,0,0,0,0,2 }, res);

}

}

换根法DFS

树中删除一个节点,则各孩子各一个连通区域,除自己及后代外一个区域。如果这个节点是根,则简单得多。各孩子一个连通区域。

DSF(cur) 返回自己及子孙到当前根节点距离是signalSpeed 倍的节点数量。令当前根节点各孩子的返回值是{i1,i2,

\cdots

⋯,im} 。i1*i2+(i1+i2)*i3

\cdots

⋯ +(I1+i2+

\dots

… + i

m

1

_{m-1}

m−1​)*im。这样不必除以二。

a<b ,表示a !=b ,(a,b)和(b,a)只取一个。

class CNeiBo

{

public:

static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)

{

vector<vector<int>> vNeiBo(n);

for (const auto& v : edges)

{

vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);

if (!bDirect)

{

vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);

}

}

return vNeiBo;

}

static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)

{

vector<vector<std::pair<int, int>>> vNeiBo(n);

for (const auto& v : edges)

{

vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);

if (!bDirect)

{

vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);

}

}

return vNeiBo;

}

};

class Solution {

public:

vector<int> countPairsOfConnectableServers(vector<vector<int>>& edges, int signalSpeed) {

m_c = edges.size() + 1;

m_iSignalSpeed = signalSpeed;

auto neiBo = CNeiBo::Three(m_c, edges, false, 0);

vector<int> vRet(m_c);

for (int c = 0; c < m_c; c++)

{

int& iRet = vRet[c];

int left = 0;

for (const auto& [next, len] : neiBo[c])

{

int cur = DFS(neiBo, next, c, len);

iRet += left * cur;

left += cur;

}

}

return vRet;

}

int DFS(vector<vector<std::pair<int, int>>>& neiBo, int cur, int par,int dis)

{

int iRet = (0 ==dis % m_iSignalSpeed);

for (const auto& [next,len] : neiBo[cur])

{

if (next == par)

{

continue;

}

iRet +=DFS(neiBo, next, cur,dis+len);

}

return iRet;

}

int m_iSignalSpeed;

int m_c;

};

割点

本解法过于复杂,除非用了提前封装好的割点扩展类,否则被使用。

class CNeiBo

{

public:

static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)

{

vector<vector<int>> vNeiBo(n);

for (const auto& v : edges)

{

vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);

if (!bDirect)

{

vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);

}

}

return vNeiBo;

}

static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)

{

vector<vector<std::pair<int, int>>> vNeiBo(n);

for (const auto& v : edges)

{

vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);

if (!bDirect)

{

vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);

}

}

return vNeiBo;

}

};

class CUnionFind

{

public:

CUnionFind(int iSize) :m_vNodeToRegion(iSize)

{

for (int i = 0; i < iSize; i++)

{

m_vNodeToRegion[i] = i;

}

m_iConnetRegionCount = iSize;

}

CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size())

{

for (int i = 0; i < vNeiBo.size(); i++) {

for (const auto& n : vNeiBo[i]) {

Union(i, n);

}

}

}

int GetConnectRegionIndex(int iNode)

{

int& iConnectNO = m_vNodeToRegion[iNode];

if (iNode == iConnectNO)

{

return iNode;

}

return iConnectNO = GetConnectRegionIndex(iConnectNO);

}

void Union(int iNode1, int iNode2)

{

const int iConnectNO1 = GetConnectRegionIndex(iNode1);

const int iConnectNO2 = GetConnectRegionIndex(iNode2);

if (iConnectNO1 == iConnectNO2)

{

return;

}

m_iConnetRegionCount--;

if (iConnectNO1 > iConnectNO2)

{

UnionConnect(iConnectNO1, iConnectNO2);

}

else

{

UnionConnect(iConnectNO2, iConnectNO1);

}

}

bool IsConnect(int iNode1, int iNode2)

{

return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);

}

int GetConnetRegionCount()const

{

return m_iConnetRegionCount;

}

vector<int> GetNodeCountOfRegion()//各联通区域的节点数量

{

const int iNodeSize = m_vNodeToRegion.size();

vector<int> vRet(iNodeSize);

for (int i = 0; i < iNodeSize; i++)

{

vRet[GetConnectRegionIndex(i)]++;

}

return vRet;

}

std::unordered_map<int, vector<int>> GetNodeOfRegion()

{

std::unordered_map<int, vector<int>> ret;

const int iNodeSize = m_vNodeToRegion.size();

for (int i = 0; i < iNodeSize; i++)

{

ret[GetConnectRegionIndex(i)].emplace_back(i);

}

return ret;

}

private:

void UnionConnect(int iFrom, int iTo)

{

m_vNodeToRegion[iFrom] = iTo;

}

vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引

int m_iConnetRegionCount;

};

class CParents

{

public:

CParents(vector<int>& vParent, const int iMaxLeve)

{

int iBitNum = 0;

for (; (1 << iBitNum) < iMaxLeve; iBitNum++);

const int n = vParent.size();

m_vParents.assign(iBitNum+1, vector<int>(n, -1));

m_vParents[0] = vParent;

//树上倍增

for (int i = 1; i < m_vParents.size(); i++)

{

for (int j = 0; j < n; j++)

{

const int iPre = m_vParents[i - 1][j];

if (-1 != iPre)

{

m_vParents[i][j] = m_vParents[i - 1][iPre];

}

}

}

}

int GetParent(int iNode, int iLeve)const

{

int iParent = iNode;

for (int iBit = 0; iBit < m_vParents.size(); iBit++)

{

if (-1 == iParent)

{

return iParent;

}

if (iLeve & (1 << iBit))

{

iParent = m_vParents[iBit][iParent];

}

}

return iParent;

}

protected:

vector<vector<int>> m_vParents;

};

class C2Parents : CParents

{

public:

C2Parents(vector<int>& vParent, const vector<int>& vLeve) :m_vLeve(vLeve)

, CParents(vParent,*std::max_element(vLeve.begin(), vLeve.end()))

{

}

int GetPublicParent(int iNode1, int iNode2)const

{

int leve0 = m_vLeve[iNode1];

int leve1 = m_vLeve[iNode2];

if (leve0 < leve1)

{

iNode2 = GetParent(iNode2, leve1 - leve0);

leve1 = leve0;

}

else

{

iNode1 = GetParent(iNode1, leve0 - leve1);

leve0 = leve1;

}

//二分查找

int left = -1, r = leve0;

while (r - left > 1)

{

const auto mid = left + (r - left) / 2;

const int iParent0 = GetParent(iNode1, mid);

const int iParent1 = GetParent(iNode2, mid);

if (iParent0 == iParent1)

{

r = mid;

}

else

{

left = mid;

}

}

return GetParent(iNode1, r);

}

protected:

vector<vector<int>> m_vParents;

const vector<int> m_vLeve;

};

class CCutPointEx

{

public:

CCutPointEx(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())

{

m_vNodeToTime.assign(m_iSize, -1);

m_vChildFirstEnd.resize(m_iSize);

m_vNodeToRegion.assign(m_iSize, -1);

m_vCut.assign(m_iSize, false);

for (int i = 0; i < m_iSize; i++)

{

if (-1 != m_vNodeToTime[i])

{

continue;

}

dfs(i, -1, vNeiB);

m_iRegionCount++;

}

m_vTimeToNode.resize(m_iSize);

for (int i = 0; i < m_iSize; i++)

{

m_vTimeToNode[m_vNodeToTime[i]] = i;;

}

}

bool Visit(int src, int dest, int iCut)const

{

if (m_vNodeToRegion[src] != m_vNodeToRegion[dest])

{

return false;//不在一个连通区域

}

if (!m_vCut[iCut])

{

return true;

}

const int r1 = GetCutRegion(iCut, src);

const int r2 = GetCutRegion(iCut, dest);

return r1 == r2;

}

vector<vector<int>> GetSubRegionOfCut(const int iCut)const

{ //删除iCut及和它相连的边后,iCut所在的区域会分成几个区域:父节点一个区域、各子节点一个区域

//父节点所在区域可能为空,如果iCut所在的连通区域只有一个节点,则返回一个没有节点的区域。

const auto& v = m_vChildFirstEnd[iCut];

vector<vector<int>> vRet(1);

int j = 0;

for (int iTime=0;iTime < m_iSize; iTime++ )

{

const int iNode= m_vTimeToNode[iTime];

if ((j < v.size()) && ( iTime >= v[j].first ))

{

j++;

vRet.emplace_back();

}

if ((iCut != iNode) && (m_vNodeToRegion[iNode] == m_vNodeToRegion[iCut]))

{

if (v.size()&&(iTime >= v.back().second))

{

vRet[0].emplace_back(iNode);

}

else

{

vRet.back().emplace_back(iNode);

}

}

}

return vRet;

}

protected:

int dfs(int cur, int parent, const vector<vector<int>>& vNeiB)

{

auto& curTime = m_vNodeToTime[cur];

m_vNodeToRegion[cur] = m_iRegionCount;

curTime = m_iTime++;

int iCutChild = 0;

int iMinTime = curTime;

for (const auto& next : vNeiB[cur])

{

if (-1 != m_vNodeToTime[next])

{

iMinTime = min(iMinTime, m_vNodeToTime[next]);

continue;

}

int iChildBeginTime = m_iTime;

const int iChildMinTime = dfs(next, cur, vNeiB);

iMinTime = min(iMinTime, iChildMinTime);

if (iChildMinTime >= curTime)

{

iCutChild++;

m_vChildFirstEnd[cur].push_back({ iChildBeginTime,m_iTime });

};

}

m_vCut[cur] = (iCutChild + (-1 != parent)) >= 2;

return iMinTime;

}

int GetCutRegion(int iCut, int iNode)const

{

const auto& v = m_vChildFirstEnd[iCut];

auto it = std::upper_bound(v.begin(), v.end(), m_vNodeToTime[iNode], [](int time, const std::pair<int, int>& pr) { return time < pr.first; });

if (v.begin() == it)

{

return v.size();

}

--it;

return (it->second > m_vNodeToTime[iNode]) ? (it - v.begin()) : v.size();

}

int m_iTime = 0;

const int m_iSize;//时间戳

int m_iRegionCount = 0;

vector<int> m_vNodeToTime;//各节点到达时间,从0开始。 -1表示未处理

vector<bool> m_vCut;//是否是割点

vector<int> m_vNodeToRegion;//各节点所在区域

vector<vector<pair<int, int>>> m_vChildFirstEnd;//左闭右开空间[0,m_vChildFirstEnd[0].first)和[m_vChildFirstEnd.back().second,iSize)是一个区域

vector<int> m_vTimeToNode;

};

2024年3月9号 新封装

class CNeiBo

{

public:

static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)

{

vector<vector<int>> vNeiBo(n);

for (const auto& v : edges)

{

vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);

if (!bDirect)

{

vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);

}

}

return vNeiBo;

}

static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)

{

vector<vector<std::pair<int, int>>> vNeiBo(n);

for (const auto& v : edges)

{

vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);

if (!bDirect)

{

vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);

}

}

return vNeiBo;

}

};

class CUnionFind

{

public:

CUnionFind(int iSize) :m_vNodeToRegion(iSize)

{

for (int i = 0; i < iSize; i++)

{

m_vNodeToRegion[i] = i;

}

m_iConnetRegionCount = iSize;

}

CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size())

{

for (int i = 0; i < vNeiBo.size(); i++) {

for (const auto& n : vNeiBo[i]) {

Union(i, n);

}

}

}

int GetConnectRegionIndex(int iNode)

{

int& iConnectNO = m_vNodeToRegion[iNode];

if (iNode == iConnectNO)

{

return iNode;

}

return iConnectNO = GetConnectRegionIndex(iConnectNO);

}

void Union(int iNode1, int iNode2)

{

const int iConnectNO1 = GetConnectRegionIndex(iNode1);

const int iConnectNO2 = GetConnectRegionIndex(iNode2);

if (iConnectNO1 == iConnectNO2)

{

return;

}

m_iConnetRegionCount--;

if (iConnectNO1 > iConnectNO2)

{

UnionConnect(iConnectNO1, iConnectNO2);

}

else

{

UnionConnect(iConnectNO2, iConnectNO1);

}

}

bool IsConnect(int iNode1, int iNode2)

{

return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);

}

int GetConnetRegionCount()const

{

return m_iConnetRegionCount;

}

vector<int> GetNodeCountOfRegion()//各联通区域的节点数量

{

const int iNodeSize = m_vNodeToRegion.size();

vector<int> vRet(iNodeSize);

for (int i = 0; i < iNodeSize; i++)

{

vRet[GetConnectRegionIndex(i)]++;

}

return vRet;

}

std::unordered_map<int, vector<int>> GetNodeOfRegion()

{

std::unordered_map<int, vector<int>> ret;

const int iNodeSize = m_vNodeToRegion.size();

for (int i = 0; i < iNodeSize; i++)

{

ret[GetConnectRegionIndex(i)].emplace_back(i);

}

return ret;

}

private:

void UnionConnect(int iFrom, int iTo)

{

m_vNodeToRegion[iFrom] = iTo;

}

vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引

int m_iConnetRegionCount;

};

class CParents

{

public:

CParents(vector<int>& vParent, const int iMaxLeve)

{

int iBitNum = 0;

for (; (1 << iBitNum) < iMaxLeve; iBitNum++);

const int n = vParent.size();

m_vParents.assign(iBitNum+1, vector<int>(n, -1));

m_vParents[0] = vParent;

//树上倍增

for (int i = 1; i < m_vParents.size(); i++)

{

for (int j = 0; j < n; j++)

{

const int iPre = m_vParents[i - 1][j];

if (-1 != iPre)

{

m_vParents[i][j] = m_vParents[i - 1][iPre];

}

}

}

}

int GetParent(int iNode, int iLeve)const

{

int iParent = iNode;

for (int iBit = 0; iBit < m_vParents.size(); iBit++)

{

if (-1 == iParent)

{

return iParent;

}

if (iLeve & (1 << iBit))

{

iParent = m_vParents[iBit][iParent];

}

}

return iParent;

}

protected:

vector<vector<int>> m_vParents;

};

class C2Parents : CParents

{

public:

C2Parents(vector<int>& vParent, const vector<int>& vLeve) :m_vLeve(vLeve)

, CParents(vParent,*std::max_element(vLeve.begin(), vLeve.end()))

{

}

int GetPublicParent(int iNode1, int iNode2)const

{

int leve0 = m_vLeve[iNode1];

int leve1 = m_vLeve[iNode2];

if (leve0 < leve1)

{

iNode2 = GetParent(iNode2, leve1 - leve0);

leve1 = leve0;

}

else

{

iNode1 = GetParent(iNode1, leve0 - leve1);

leve0 = leve1;

}

//二分查找

int left = -1, r = leve0;

while (r - left > 1)

{

const auto mid = left + (r - left) / 2;

const int iParent0 = GetParent(iNode1, mid);

const int iParent1 = GetParent(iNode2, mid);

if (iParent0 == iParent1)

{

r = mid;

}

else

{

left = mid;

}

}

return GetParent(iNode1, r);

}

protected:

vector<vector<int>> m_vParents;

const vector<int> m_vLeve;

};

//割点

class CCutPoint

{

public:

CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())

{

m_vNodeToTime.assign(m_iSize, -1);

m_vCutNewRegion.resize(m_iSize);

for (int i = 0; i < m_iSize; i++)

{

if (-1 == m_vNodeToTime[i])

{

m_vRegionFirstTime.emplace_back(m_iTime);

dfs(vNeiB, i, -1);

}

}

}

int dfs(const vector<vector<int>>& vNeiB,const int cur, const int parent)

{

int iMinTime = m_vNodeToTime[cur] = m_iTime++;

int iRegionCount = (-1 != parent);//根连通区域数量

for (const auto& next : vNeiB[cur]){

if (-1 != m_vNodeToTime[next]){

iMinTime = min(iMinTime, m_vNodeToTime[next]);

continue;

}

const int childMinTime = dfs(vNeiB, next, cur);

iMinTime = min(iMinTime, childMinTime);

if (childMinTime >= m_vNodeToTime[cur]){

iRegionCount++;

m_vCutNewRegion[cur].emplace_back(m_vNodeToTime[next], m_iTime);

}

}

if (iRegionCount < 2)

{

m_vCutNewRegion[cur].clear();

}

return iMinTime;

}

const int m_iSize;

const vector<int>& Time()const { return m_vNodeToTime; }//各节点的时间戳

const vector<int>& RegionFirstTime()const { return m_vRegionFirstTime; }//各连通区域的最小时间戳

vector<bool> Cut()const {

vector<bool> ret;

for (int i = 0; i < m_iSize; i++)

{

ret.emplace_back(m_vCutNewRegion[i].size());

}

return ret; }//

const vector < vector<pair<int, int>>>& NewRegion()const { return m_vCutNewRegion; };

protected:

vector<int> m_vNodeToTime;

vector<int> m_vRegionFirstTime;

vector < vector<pair<int, int>>> m_vCutNewRegion; //m_vCutNewRegion[c]如果存在[left,r) 表示割掉c后,时间戳[left,r)的节点会形成新区域

int m_iTime = 0;

};

class CConnectAfterCutPoint

{

public:

CConnectAfterCutPoint(const vector<vector<int>>& vNeiB) :m_ct(vNeiB)

{

m_vTimeToNode.resize(m_ct.m_iSize);

m_vNodeToRegion.resize(m_ct.m_iSize);

for (int iNode = 0; iNode < m_ct.m_iSize; iNode++)

{

m_vTimeToNode[m_ct.Time()[iNode]] = iNode;

}

for (int iTime = 0,iRegion= 0; iTime < m_ct.m_iSize; iTime++)

{

if ((iRegion < m_ct.RegionFirstTime().size()) && (m_ct.RegionFirstTime()[iRegion] == iTime))

{

iRegion++;

}

m_vNodeToRegion[m_vTimeToNode[iTime]] = (iRegion - 1);

}

}

bool Connect(int src, int dest, int iCut)const

{

if (m_vNodeToRegion[src] != m_vNodeToRegion[dest])

{

return false;//不在一个连通区域

}

if (0 == m_ct.NewRegion()[iCut].size())

{ //不是割点

return true;

}

const int r1 = GetCutRegion(iCut, src);

const int r2 = GetCutRegion(iCut, dest);

return r1 == r2;

}

vector<vector<int>> GetSubRegionOfCut(const int iCut)const

{ //删除iCut及和它相连的边后,iCut所在的区域会分成几个区域:父节点一个区域、各子节点一个区域

//父节点所在区域可能为空,如果iCut所在的连通区域只有一个节点,则返回一个没有节点的区域。

const auto& v = m_ct.NewRegion()[iCut];

vector<int> vParen;

const int iRegion = m_vNodeToRegion[iCut];

const int iEndTime = (iRegion + 1 == m_ct.RegionFirstTime().size()) ? m_ct.m_iSize : m_ct.RegionFirstTime()[iRegion+1];

vector<vector<int>> vRet;

for (int iTime = m_ct.RegionFirstTime()[iRegion],j=-1; iTime < iEndTime; iTime++)

{

if (iCut == m_vTimeToNode[iTime])

{

continue;

}

if ((j + 1 < v.size()) && (v[j + 1].first == iTime))

{

j++;

vRet.emplace_back();

}

const int iNode = m_vTimeToNode[iTime];

if ((-1 != j ) && (iTime >= v[j].first) && (iTime < v[j].second))

{

vRet.back().emplace_back(iNode);

}

else

{

vParen.emplace_back(iNode);

}

}

vRet.emplace_back();

vRet.back().swap(vParen);

return vRet;

}

protected:

int GetCutRegion(int iCut, int iNode)const

{

const auto& v = m_ct.NewRegion()[iCut];

auto it = std::upper_bound(v.begin(), v.end(), m_ct.Time()[iNode], [](int time, const std::pair<int, int>& pr) { return time < pr.first; });

if (v.begin() == it)

{

return v.size();

}

--it;

return (it->second > m_ct.Time()[iNode]) ? (it - v.begin()) : v.size();

}

vector<int> m_vTimeToNode;

vector<int> m_vNodeToRegion;//各节点所在区域

const CCutPoint m_ct;

};

class Solution {

public:

vector<int> countPairsOfConnectableServers(vector<vector<int>>& edges, int signalSpeed) {

m_c = edges.size() + 1;

m_vDisToRoot.resize(m_c);

m_vParent.resize(m_c);

m_vLeve.resize(m_c);

auto neiBo = CNeiBo::Three(m_c, edges, false, 0);

DFS(neiBo, 0, -1, 0, 0);

C2Parents par(m_vParent, m_vLeve);

auto neiBo2 = CNeiBo::Two(m_c, edges, false, 0);

CConnectAfterCutPoint cut(neiBo2);

vector<int> vRet(m_c);

for (int c = 0; c < m_c; c++)

{

auto regs = cut.GetSubRegionOfCut(c);

int left = 0;

int& iRet = vRet[c];

for (const auto& subRegion : regs)

{

int cur = 0;

for (const auto& ab : subRegion)

{

const int pub = par.GetPublicParent(ab, c);

const int len = m_vDisToRoot[ab] + m_vDisToRoot[c] - 2 * m_vDisToRoot[pub];

if (0 != len % signalSpeed)

{

continue;

}

cur++;

}

iRet += left * cur;

left += cur;

}

}

return vRet;

}

void DFS(vector<vector<std::pair<int, int>>>& neiBo, int cur, int par, int leve, int dis)

{

m_vDisToRoot[cur] = dis;

m_vParent[cur] = par;

m_vLeve[cur] = leve;

for (const auto& [next, len] : neiBo[cur])

{

if (next == par)

{

continue;

}

DFS(neiBo, next, cur, leve + 1, dis + len);

}

}

vector<int> m_vDisToRoot, m_vParent, m_vLeve;

int m_c;

};

DFS代替树上倍增

时间复杂度的瓶颈在 树上倍增。可以直接DFS 最近公共祖先。

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 **C+

+17**

如无特殊说明,本算法用**C++**实现。



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。