Ubantu 20.04 安装 Mujoco210、mujoco-py、gym及报错解决

wjwuyh 2024-10-03 13:05:01 阅读 81

1. 安装Mujoco

1.1 官网下载Mujoco210安装包

Mujoco2.1.0下载链接

选第一个

1.2 创建文件夹并解压安装包

<code>mkdir ~/.mujoco

创建好后,点击显示隐藏文件可以找到

找到刚刚下载的压缩包所在位置(一般在下载目录下),右键选择 在终端打开

<code>tar -zxvf mujoco210-linux-x86_64.tar.gz -C ~/.mujoco

1.3 设置环境变量

<code>gedit ~/.bashrc

在最后一行加入下面代码然后保存退出文档

export LD_LIBRARY_PATH=~/.mujoco/mujoco210/bin

更新环境变量

source ~/.bashrc

这就安装完了。

1.4 测试Mujoco

<code>cd ~/.mujoco/mujoco210/bin

./simulate ../model/humanoid.xml

出现上图的界面,则mujoco安装成功。

2. 安装mujoco-py

2.1 创建虚拟环境

<code>conda create -n ttmujoco python=3.8

conda activate ttmujoco

这里注意python版本不宜太低

2.2 下载mujoco-py安装包

确保在刚刚创建的虚拟环境中,输入

<code>git clone https://github.com/openai/mujoco-py.git

2.3 然后依次执行下面的命令

cd ~/mujoco-py #注意换成你自己路径

pip3 install -U 'mujoco-py<2.2,>=2.1'

pip3 install -r requirements.txt

pip3 install -r requirements.dev.txt

python3 setup.py install

2.4 配置环境文件

gedit ~/.bashrc

在最后加上这三句

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/XXX/.mujoco/mujoco210/bin

# XXX 是你的用户名

export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so

 更新配置

source ~/.bashrc

2.5 测试mujoco-py
2.5.1测试1

在pycharm中新建一个python文件并使用前面刚刚创建的环境(ttmujoco)

输入以下代码

import mujoco_py

import os

mj_path = mujoco_py.utils.discover_mujoco()

xml_path = os.path.join(mj_path, 'model', 'humanoid.xml')

model = mujoco_py.load_model_from_path(xml_path)

sim = mujoco_py.MjSim(model)

print(sim.data.qpos)

# [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

sim.step()

print(sim.data.qpos)

# [-2.09531783e-19 2.72130735e-05 6.14480786e-22 -3.45474715e-06

# 7.42993721e-06 -1.40711141e-04 -3.04253586e-04 -2.07559344e-04

# 8.50646247e-05 -3.45474715e-06 7.42993721e-06 -1.40711141e-04

# -3.04253586e-04 -2.07559344e-04 -8.50646247e-05 1.11317030e-04

# -7.03465386e-05 -2.22862221e-05 -1.11317030e-04 7.03465386e-05

# -2.22862221e-05]

这个时候可能就要报错了

错误1:

Exception: 

Missing path to your environment variable. 

Current values LD_LIBRARY_PATH=

Please add following line to .bashrc:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/XXX/.mujoco/mujoco210/bin

或者

ERROR: GLEW initalization error: Missing GL version

这两个解决方案同理,只是具体的环境变量名称不一样

错误1的环境变量是:export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/wenjingwu/.mujoco/mujoco210/bin

错误2的环境变量是:export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so

解决方案1:检查2.4是否把环境变量写进去了,没写的话要加进去

解决方案2:右键选择“修改运行配置” ,在环境变量这里把提示你少的这个环境变量加进去

然后发现还是不行..

解决方案3: 关闭pycharm和终端,找到pycharm.sh所在位置,右键然后选择在终端打开,然后输入

<code>./pycharm.sh

参考这里的解决方案,因为我每次都是直接点击桌面图标进入pycharm,好像并没有解决问题,尝试了一下从终端进入,瞬间就好起来了!

最后这样的输出结果就是成功了。

错误2:

Exception check on 'c_warning_callback' will always require the GIL to be acquired.

Possible solutions:

    1. Declare 'c_warning_callback' as 'noexcept' if you control the definition and you're sure you don't want the function to raise exceptions.

    2. Use an 'int' return type on 'c_warning_callback' to allow an error code to be returned.

performance hint: /home/wenjingwu/anaconda3/envs/rl_ur5/lib/python3.12/site-packages/mujoco_py/cymj.pyx:104:5: Exception check on 'c_error_callback' will always require the GIL to be acquired.

Possible solutions:

    1. Declare 'c_error_callback' as 'noexcept' if you control the definition and you're sure you don't want the function to raise exceptions.

    2. Use an 'int' return type on 'c_error_callback' to allow an error code to be returned.

Error compiling Cython file:

------------------------------------------------------------

...

    See c_warning_callback, which is the C wrapper to the user defined function

    '''

    global py_warning_callback

    global mju_user_warning

    py_warning_callback = warn

    mju_user_warning = c_warning_callback

                       ^

------------------------------------------------------------ 

解决:更改cython版本

pip install cython==3.0.0a10

2.5.2 测试2

下面再试一下文件中自带的例子

首先进入创建的虚拟环境中

conda activate ttmujoco

切换文件夹

cd ./mujoco-py/examples

python body_interaction.py

尝试用pycharm打开运行也是没问题的

3. 安装gym

3.1 先进入自己创建的虚拟环境

<code>conda activate ttmujoco

3.2 切换到.mujoco文件夹

cd ~/.mujoco/

3.3 下载gym安装包

git clone https://github.com/openai/gym

3.4 切换到gym文件夹

cd gym

3.5 安装

pip install -e '.[all]'

3.6 报错解决

错误1:error: subprocess-exited-with-error

解决:

<code>pip uninstall setuptools

pip install setuptools==69.0.0

pip install -e '.[all]'

错误2:error: command 'swig' failed: No such file or directory

解决:

<code>sudo apt install swig

pip install -e '.[all]'

3.7 配置环境变量

<code>gedit ~/.bashrc

在最后加上

export PYTHONPATH=~/.mujoco/gym:$PYTHONPATH

更新一下

source ~/.bashrc

完成!

3.8 测试

试了好几篇文章的测试代码都报错,最后终于在这里找到了答案。

直接把2.5.1中测试的代码注释掉,换成下面的代码就可以。

3.8.1 代码1

import gym

env = gym.make('MountainCar-v0', render_mode = 'human')

for i_episode in range(10):

observation = env.reset()

for t in range(100):

env.render()

print(observation)

action = env.action_space.sample()

observation, reward, done, info, _ = env.step(action)

if done:

print("Episode finished after {} timesteps".format(t+1))

break

env.close()

3.8.2 代码2

<code>import gym

env = gym.make('CartPole-v1', render_mode = "human")

for episode in range(10):

env.reset()

print("Episode finished after {} timesteps".format(episode))

for _ in range(100):

env.render()

env.step(env.action_space.sample())

env.close()



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。