Python入门,盘点Python最常用的20 个包总结~

AIGC零基础入门小白 2024-07-10 10:05:02 阅读 95

文章目录

前言1.numpy(数据处理和科学计算)2.pandas(数据处理和分析)3.matplotlib(数据可视化)4.scikit-learn(机器学习工具)5.tensorflow(深度学习框架)6.keras(深度学习框架)7.requests(HTTP 库)8.flask(Web 框架)9.scrapy(网络爬虫框架)10.beautifulsoup(HTML 解析器)11.selenium(Web 自动化测试)12.ctypes(调用 C 语言库)13.wxPython(GUI 开发)14.pillow(图像处理)15.openpyxl(处理 Excel 文件)16.nltk(自然语言处理)17.jieba(中文分词)18.re(正则表达式)19.datetime(日期时间处理)20.random(随机数生成)总结关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍

四、Python工具包+项目源码合集①Python工具包②Python实战案例③Python小游戏源码五、面试资料

六、Python兼职渠道


前言

【python零基础入门小白】博主存在的意义:旨在帮助各位学习Python的小伙伴获得更高速更效率的学习收获。

这篇文章主要介绍了Python最常用的20 个包总结,在平时使用Python的过程中,需要用到很多有用的包,今天就来盘点一下常用的包,需要的朋友可以参考下

在这里插入图片描述


1.numpy(数据处理和科学计算)

代码示例:

<code>arr = np.array([1, 2, 3, 4, 5])

print(arr)

2.pandas(数据处理和分析)

data = { 'name': ['John', 'Bob', 'Alice'], 'age': [20, 35, 25]}

df = pd.DataFrame(data)

print(df)

3.matplotlib(数据可视化)

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]

y = [4, 2, 7, 5, 9]

plt.plot(x, y)

plt.show()

4.scikit-learn(机器学习工具)

from sklearn.linear_model import LinearRegression

X = [[1, 4], [2, 5], [3, 6]]

y = [8, 10, 12]

model = LinearRegression().fit(X, y)

print(model.predict([[4, 7]]))

5.tensorflow(深度学习框架)

import tensorflow as tf

x = tf.constant([1, 2, 3, 4])

y = tf.constant([5, 6, 7, 8])

z = tf.add(x, y)

sess = tf.Session()

print(sess.run(z))

6.keras(深度学习框架)

from keras.models import Sequential

from keras.layers import Dense

model = Sequential()

model.add(Dense(10, input_dim=5, activation='relu'))code>

model.add(Dense(1, activation='sigmoid'))code>

model.compile(loss='binary_crossentropy', optimizer='adam')code>

7.requests(HTTP 库)

import requests

response = requests.get('https://www.baidu.com')

print(response.text)

8.flask(Web 框架)

from flask import Flask, render_template

app = Flask(**name**)

@app.route('/')

def index():

return render_template('index.html')

if **name** == '**main**':

app.run(debug=True)

9.scrapy(网络爬虫框架)

import scrapy

class MySpider(scrapy.Spider):

name = 'myspider'

start_urls = ['http://quotes.toscrape.com']

def parse(self, response):

for quote in response.css('div.quote'):

yield { 'text': quote.css('span.text::text').get(),

'author': quote.css('span small::text').get()}

10.beautifulsoup(HTML 解析器)

from bs4 import BeautifulSoup

html = '<html><head><title>这是标题</title></head><body><p>这是一个段落。</p ></body></html>'

soup = BeautifulSoup(html, 'html.parser')

print(soup.title.text)

11.selenium(Web 自动化测试)

from selenium import webdriver

driver = webdriver.Chrome()

driver.get('https://www.baidu.com')

search_box = driver.find_element_by_name('wd')

search_box.send_keys('Python')

search_box.submit()

12.ctypes(调用 C 语言库)

import ctypes

lib = ctypes.cdll.LoadLibrary('libexample.so')

lib.add(1, 2)

13.wxPython(GUI 开发)

import wx

app = wx.App()

frame = wx.Frame(None, title='Hello, wxPython!')code>

frame.Show()

app.MainLoop()

14.pillow(图像处理)

from PIL import Image

im = Image.open('test.jpg')

im.show()

15.openpyxl(处理 Excel 文件)

import openpyxl

wb = openpyxl.load_workbook('example.xlsx')

sheet = wb['Sheet1']

cell = sheet['A1']

print(cell.value)

16.nltk(自然语言处理)

import nltk

sent = ‘This is a sentence.'

tokens = nltk.word_tokenize(sent)

print(tokens)

17.jieba(中文分词)

import jieba

text = '我爱中文分词'

words = jieba.cut(text)

for word in words:

print(word)

18.re(正则表达式)

import re

text = 'The quick brown fox jumps over the lazy dog.'

pattern = re.compile('fox')

print(pattern.findall(text))

19.datetime(日期时间处理)

import datetime

dt = datetime.datetime.now()

print(dt)

20.random(随机数生成)

import random

print(random.randint(1, 10))


总结

到此这篇关于Python最常用的20 个包总结的文章就介绍到这了。希望大家以后持续关注博主~


关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉CSDN大礼包:《Python入门资料&实战源码&安装工具】免费领取(安全链接,放心点击

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

二、Python基础学习视频

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述

在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!

在这里插入图片描述

因篇幅有限,仅展示部分资料

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

在这里插入图片描述

四、Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!

在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!

在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!

在这里插入图片描述

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

在这里插入图片描述

六、Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。

在这里插入图片描述

在这里插入图片描述

这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【<code>保证100%免费



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。