python调用semantic scholar【语义学者】API获取论文信息
CSDN 2024-09-16 16:35:01 阅读 57
原本是想抽取arxiv上面论文中的<code>参考文献信息,但是PDF文件难以解析。固想到用该论文的信息去其他数据库中检索。semantic scholar上面的论文就可以显示出文章的参考文献信息,固调用API实现此目的。总体的流程就是:
根据arxiv-id获取semantic scholar - id通过semantic scholar - id获取该文章的参考文献信息(title、author、time、id)
数据准备
之前已经爬取好了arxiv上关于GCN的论文元数据,见文章👉python爬取arXiv论文元数据
例如论文链接<code>https://arxiv.org/pdf/2403.02221的最后一串数字2403.02221
就是该篇文章的arxiv-id。
根据文章arxiv-id获取semantic scholar - id
import requests
# 设置 arXiv ID
arxiv_id = "2403.00825"
# 构造请求的 URL,使用 arXiv ID 作为参数
url = f"https://api.semanticscholar.org/v1/paper/arXiv:{ -- -->arxiv_id}"
# 发起请求
response = requests.get(url)
# 检查请求是否成功
if response.status_code == 200:
# 解析响应的 JSON 数据
data = response.json()
# 获取并打印 Semantic Scholar 的 ID
semantic_scholar_id = data.get("paperId")
print(f"Semantic Scholar ID: { semantic_scholar_id}")
else:
print(f"请求失败,状态码:{ response.status_code}")
运行代码后输出:Semantic Scholar ID: f15a2d6878429c395e31d738a481fb39e98ca7e2
通过semantic scholar - id 获取该篇文章的参考文献信息(标题、作者、年份和ID)
import requests
semantic_scholar_id = "075f320d8e82673b51204a768d831a17f9999c02"
# 构造请求的URL
url = f"https://api.semanticscholar.org/v1/paper/{ semantic_scholar_id}"
# 发起请求
response = requests.get(url)
# 检查请求是否成功
if response.status_code == 200:
data = response.json()
# 检查是否有引用文献
if "references" in data and len(data["references"]) > 0:
# 打印引用文献的信息,例如标题、作者、时间和Semantic Scholar-ID
for reference in data["references"]:
print(f"Title: { reference.get('title', 'No title available')}")
# 打印每个引用的作者,如果有的话
if "authors" in reference:
authors = ", ".join([author.get("name", "N/A") for author in reference["authors"]])
print(f"Authors: { authors}")
# 打印出版年份
print(f"Year: { reference.get('year', 'No year available')}")
# 打印 Semantic Scholar ID
print(f"Semantic Scholar ID: { reference.get('paperId', 'No ID available')}")
print("-----")
else:
print("暂没有References")
else:
print(f"请求失败,状态码:{ response.status_code}")
输出:
Title: MSNet: Multi-Resolution Synergistic Networks for Adaptive Inference
Authors: Renlong Hang, Xuwei Qian, Qingshan Liu
Year: 2023
Semantic Scholar ID: 46a0dfaa98118728052b9f017940470ba79ce0f1
-----
Title: ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
Authors: Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In-So Kweon, Saining Xie
Year: 2023
Semantic Scholar ID: 2218f1713d7f721ab76801063416ec9b11c7646f
-----
Title: Dynamic Neural Networks: A Survey
Authors: Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, Yulin Wang
Year: 2021
Semantic Scholar ID: 837ac4ed6825502f0460caec45e12e734c85b113
-----
# 可以列出所有的参考文献,篇幅原因我仅列了3个
另外还有其他的一些功能,下面举两个,再想了解其他更多的信息参考官方文档👉semantic scholar - api官方文档链接
通过semantic scholar - id 获取该篇文章的信息
import requests
paper_id = "f15a2d6878429c395e31d738a481fb39e98ca7e2"
# 构造请求的URL
url = f"https://api.semanticscholar.org/v1/paper/{ paper_id}"
# 发起请求
response = requests.get(url)
# 检查请求是否成功
if response.status_code == 200:
paper_info = response.json()
print(paper_info) # 打印文章信息
else:
print(f"请求失败,状态码:{ response.status_code}")
输出:
{ 'abstract': "Text classification is the task of assigning a document to a predefined class. However, it is expensive to acquire enough labeled documents or to label them. In this paper, we study the regularization methods' effects on various classification models when only a few labeled data are available. We compare a simple word embedding-based model, which is simple but effective, with complex models (CNN and BiLSTM). In supervised learning, adversarial training can further regularize the model. When an unlabeled dataset is available, we can regularize the model using semi-supervised learning methods such as the Pi model and virtual adversarial training. We evaluate the regularization effects on four text classification datasets (AG news, DBpedia, Yahoo! Answers, Yelp Polarity), using only 0.1% to 0.5% of the original labeled training documents. The simple model performs relatively well in fully supervised learning, but with the help of adversarial training and semi-supervised learning, both simple and complex models can be regularized, showing better results for complex models. Although the simple model is robust to overfitting, a complex model with well-designed prior beliefs can be also robust to overfitting.",
'arxivId': '2403.00825',
'authors': [{ 'authorId': '2156939179',
'name': 'Jongga Lee',
'url': 'https://www.semanticscholar.org/author/2156939179'},
{ 'authorId': '2289841708',
'name': 'Jaeseung Yim',
'url': 'https://www.semanticscholar.org/author/2289841708'},
{ 'authorId': '2289841978',
'name': 'Seohee Park',
'url': 'https://www.semanticscholar.org/author/2289841978'},
{ 'authorId': '2290016625',
'name': 'Changwon Lim',
'url': 'https://www.semanticscholar.org/author/2290016625'}],
'citationVelocity': 0,
'citations': [],
'corpusId': 268230995,
'doi': '10.48550/arXiv.2403.00825',
'fieldsOfStudy': ['Computer Science'],
'influentialCitationCount': 0,
'isOpenAccess': False,
'isPublisherLicensed': True,
'is_open_access': False,
'is_publisher_licensed': True,
'numCitedBy': 0,
'numCiting': 0,
'paperId': 'f15a2d6878429c395e31d738a481fb39e98ca7e2',
'references': [],
's2FieldsOfStudy': [{ 'category': 'Computer Science', 'source': 'external'},
{ 'category': 'Computer Science', 'source': 's2-fos-model'}],
'title': 'Comparing effectiveness of regularization methods on text classification: Simple and complex model in data shortage situation',
'topics': [],
'url': 'https://www.semanticscholar.org/paper/f15a2d6878429c395e31d738a481fb39e98ca7e2',
'venue': 'arXiv.org',
'year': 2024}
获取该篇论文的10篇推荐论文
import requests
import json
# 设置 API 的基础 URL
base_url = "https://api.semanticscholar.org/recommendations/v1"
# 指定要请求的论文推荐的 API 路径和参数
paper_id = "075f320d8e82673b51204a768d831a17f9999c02"
path = f"/papers/forpaper/{ paper_id}"
params = {
"limit": 10, # 请求返回的推荐论文数量
"fields": "title,authors,year" # 请求返回的字段
}
# 发起 GET 请求
response = requests.get(f"{ base_url}{ path}", params=params)
# 检查请求是否成功
if response.status_code == 200:
# 解析响应内容
recommendations = response.json()
print(json.dumps(recommendations, indent=2))
else:
print(f"Error: { response.status_code}")
输出:
{
"recommendedPapers": [
{
"paperId": "bd8ee79c28ef2eb55185c6912484847696c0773b",
"title": "SoD2: Statically Optimizing Dynamic Deep Neural Network",
"year": 2024,
"authors": [
{
"authorId": "48643324",
"name": "Wei Niu"
},
{
"authorId": "2289611051",
"name": "Gagan Agrawal"
},
{
"authorId": "2244768705",
"name": "Bin Ren"
}
]
},
{ ..............省略
]
}
通过doi获取论文信息
import requests
doi = "10.1145/3292500.3330925"
# 构造请求的 URL
url = f"https://api.semanticscholar.org/v1/paper/{ doi}"
response = requests.get(url)
if response.status_code == 200:
paper_details = response.json()
print(f"Semantic Scholar ID: { paper_details.get('paperId')}")
print(f"Title: { paper_details.get('title')}")
print(f"Authors: { [author['name'] for author in paper_details.get('authors', [])]}")
print(f"Year of Publication: { paper_details.get('year')}")
print(f"Abstract: { paper_details.get('abstract', 'No abstract available')}")
else:
print(f"Error: Failed to retrieve data, status code { response.status_code}")
输出:
Semantic Scholar ID: 05c4eb154ad9512a69569c18d68bc4428ee8bb83
Title: Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
Authors: ['Wei-Lin Chiang', 'Xuanqing Liu', 'Si Si', 'Yang Li', 'Samy Bengio', 'Cho-Jui Hsieh']
Year of Publication: 2019
Abstract: Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorit....省略
邮箱:k1933211129@163.com
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。