空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC / SPPELAN
CSDN 2024-06-13 08:35:08 阅读 84
对于基础薄弱的同学来说,推荐阅读《目标检测蓝皮书》📘,里面涵盖了丰富的目标检测实用知识,是你迅速掌握目标检测的理想选择!
如果想了解 YOLOv5 和 YOLOv7 系列算法的训练和改进,可以关注专栏《YOLOv5/v7 改进实战》🌟。该专栏涵盖了丰富的YOLO实用教程,专门为改进YOLO的同学而设计。该专栏阅读量已经突破60w+🚀,被誉为全网最经典的教程!所有的改进方法都提供了详细的手把手教学!
《YOLOv5/v7 进阶实战》🏅专栏是在《YOLOv5/v7 改进实战》🌟专栏上进一步推出的更加有难度的专栏,除大量的最新最前沿改进外,还包含多种手把手的部署压缩教程,内容不仅可以用于小论文,也可用于大论文!
想了解 YOLOv8 系列算法教程的同学可以关注这个专栏《YOLOv8改进实战》🍀,这个专栏为博主精心设计的最新专栏,随 YOLOv8 官方项目实时更新,内容以最新最前沿的改进为主,专栏内容包含【检测】【分类】【分割】【关键点】任务!
我最近在哔哩哔哩上更新了视频版的讲解,有需要的同学可以关注一下~ 我的哔哩哔哩主页
文章目录
1 原理1.1 SPP(Spatial Pyramid Pooling)1.2 SPPF(Spatial Pyramid Pooling - Fast)1.3 SimSPPF(Simplified SPPF)1.4 ASPP(Atrous Spatial Pyramid Pooling)1.5 RFB(Receptive Field Block)1.6 SPPCSPC1.7 SPPFCSPC🍀1.8 SPPELAN 2 参数量对比3 改进方式4 Issue本人更多YOLOv5实战内容导航🍀🌟🚀
1 原理
1.1 SPP(Spatial Pyramid Pooling)
SPP
模块是何凯明大神在2015年的论文《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》中被提出。
SPP
全程为空间金字塔池化结构,主要是为了解决两个问题:
有效避免了对图像区域裁剪、缩放操作导致的图像失真等问题;解决了卷积神经网络对图相关重复特征提取的问题,大大提高了产生候选框的速度,且节省了计算成本。
class SPP(nn.Module): # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729 def __init__(self, c1, c2, k=(5, 9, 13)): super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
1.2 SPPF(Spatial Pyramid Pooling - Fast)
这个是YOLOv5
作者Glenn Jocher
基于SPP
提出的,速度较SPP
快很多,所以叫SPP-Fast
class SPPF(nn.Module): # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * 4, c2, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
1.3 SimSPPF(Simplified SPPF)
美团YOLOv6
提出的模块,感觉和SPPF
只差了一个激活函数,简单测试了一下,单个ConvBNReLU
速度要比ConvBNSiLU
快18%
class SimConv(nn.Module): '''Normal Conv with ReLU activation''' def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False): super().__init__() padding = kernel_size // 2 self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, ) self.bn = nn.BatchNorm2d(out_channels) self.act = nn.ReLU() def forward(self, x): return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): return self.act(self.conv(x))class SimSPPF(nn.Module): '''Simplified SPPF with ReLU activation''' def __init__(self, in_channels, out_channels, kernel_size=5): super().__init__() c_ = in_channels // 2 # hidden channels self.cv1 = SimConv(in_channels, c_, 1, 1) self.cv2 = SimConv(c_ * 4, out_channels, 1, 1) self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
1.4 ASPP(Atrous Spatial Pyramid Pooling)
受到SPP
的启发,语义分割模型DeepLabv2中提出了ASPP
模块(空洞空间卷积池化金字塔),该模块使用具有不同采样率的多个并行空洞卷积层。为每个采样率提取的特征在单独的分支中进一步处理,并融合以生成最终结果。该模块通过不同的空洞率构建不同感受野的卷积核,用来获取多尺度物体信息,具体结构比较简单如下图所示:
ASPP
是在DeepLab中提出来的,在后续的DeepLab版本中对其做了改进,如加入BN层、加入深度可分离卷积等,但基本的思路还是没变。
# without BN versionclass ASPP(nn.Module): def __init__(self, in_channel=512, out_channel=256): super(ASPP, self).__init__() self.mean = nn.AdaptiveAvgPool2d((1, 1)) # (1,1)means ouput_dim self.conv = nn.Conv2d(in_channel,out_channel, 1, 1) self.atrous_block1 = nn.Conv2d(in_channel, out_channel, 1, 1) self.atrous_block6 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=6, dilation=6) self.atrous_block12 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=12, dilation=12) self.atrous_block18 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=18, dilation=18) self.conv_1x1_output = nn.Conv2d(out_channel * 5, out_channel, 1, 1) def forward(self, x): size = x.shape[2:] image_features = self.mean(x) image_features = self.conv(image_features) image_features = F.upsample(image_features, size=size, mode='bilinear') atrous_block1 = self.atrous_block1(x) atrous_block6 = self.atrous_block6(x) atrous_block12 = self.atrous_block12(x) atrous_block18 = self.atrous_block18(x) net = self.conv_1x1_output(torch.cat([image_features, atrous_block1, atrous_block6, atrous_block12, atrous_block18], dim=1)) return net
1.5 RFB(Receptive Field Block)
RFB
模块是在《ECCV2018:Receptive Field Block Net for Accurate and Fast Object Detection》一文中提出的,该文的出发点是模拟人类视觉的感受野从而加强网络的特征提取能力,在结构上RFB
借鉴了Inception
的思想,主要是在Inception
的基础上加入了空洞卷积,从而有效增大了感受野
RFB
和RFB-s
的架构。RFB-s
用于在浅层人类视网膜主题图中模拟较小的pRF
,使用具有较小内核的更多分支。
class BasicConv(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True): super(BasicConv, self).__init__() self.out_channels = out_planes if bn: self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) self.relu = nn.ReLU(inplace=True) if relu else None else: self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True) self.bn = None self.relu = nn.ReLU(inplace=True) if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return xclass BasicRFB(nn.Module): def __init__(self, in_planes, out_planes, stride=1, scale=0.1, map_reduce=8, vision=1, groups=1): super(BasicRFB, self).__init__() self.scale = scale self.out_channels = out_planes inter_planes = in_planes // map_reduce self.branch0 = nn.Sequential( BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False), BasicConv(inter_planes, 2 * inter_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), groups=groups), BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision, dilation=vision, relu=False, groups=groups) ) self.branch1 = nn.Sequential( BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False), BasicConv(inter_planes, 2 * inter_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), groups=groups), BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 2, dilation=vision + 2, relu=False, groups=groups) ) self.branch2 = nn.Sequential( BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False), BasicConv(inter_planes, (inter_planes // 2) * 3, kernel_size=3, stride=1, padding=1, groups=groups), BasicConv((inter_planes // 2) * 3, 2 * inter_planes, kernel_size=3, stride=stride, padding=1, groups=groups), BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 4, dilation=vision + 4, relu=False, groups=groups) ) self.ConvLinear = BasicConv(6 * inter_planes, out_planes, kernel_size=1, stride=1, relu=False) self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False) self.relu = nn.ReLU(inplace=False) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) x2 = self.branch2(x) out = torch.cat((x0, x1, x2), 1) out = self.ConvLinear(out) short = self.shortcut(x) out = out * self.scale + short out = self.relu(out) return out
1.6 SPPCSPC
该模块是YOLOv7
中使用的SPP
结构,表现优于SPPF
,但参数量和计算量提升了很多
class SPPCSPC(nn.Module): # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)): super(SPPCSPC, self).__init__() c_ = int(2 * c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(c_, c_, 3, 1) self.cv4 = Conv(c_, c_, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) self.cv5 = Conv(4 * c_, c_, 1, 1) self.cv6 = Conv(c_, c_, 3, 1) self.cv7 = Conv(2 * c_, c2, 1, 1) def forward(self, x): x1 = self.cv4(self.cv3(self.cv1(x))) y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1))) y2 = self.cv2(x) return self.cv7(torch.cat((y1, y2), dim=1))
#分组SPPCSPC 分组后参数量和计算量与原本差距不大,不知道效果怎么样class SPPCSPC_group(nn.Module): def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)): super(SPPCSPC_group, self).__init__() c_ = int(2 * c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1, g=4) self.cv2 = Conv(c1, c_, 1, 1, g=4) self.cv3 = Conv(c_, c_, 3, 1, g=4) self.cv4 = Conv(c_, c_, 1, 1, g=4) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) self.cv5 = Conv(4 * c_, c_, 1, 1, g=4) self.cv6 = Conv(c_, c_, 3, 1, g=4) self.cv7 = Conv(2 * c_, c2, 1, 1, g=4) def forward(self, x): x1 = self.cv4(self.cv3(self.cv1(x))) y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1))) y2 = self.cv2(x) return self.cv7(torch.cat((y1, y2), dim=1))
1.7 SPPFCSPC🍀
我借鉴了SPPF
的思想将SPPCSPC
优化了一下,得到了SPPFCSPC
,在保持感受野不变的情况下获得速度提升;我把这个模块给v7
作者看了,并没有得到否定,详细回答可以看4 Issue
目前这个结构被YOLOv6 3.0
版本使用了,效果很不错,大家可以看一下YOLOv6 3.0
的论文,里面有详细的实验结果。
class SPPFCSPC(nn.Module): def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=5): super(SPPFCSPC, self).__init__() c_ = int(2 * c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(c_, c_, 3, 1) self.cv4 = Conv(c_, c_, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) self.cv5 = Conv(4 * c_, c_, 1, 1) self.cv6 = Conv(c_, c_, 3, 1) self.cv7 = Conv(2 * c_, c2, 1, 1) def forward(self, x): x1 = self.cv4(self.cv3(self.cv1(x))) x2 = self.m(x1) x3 = self.m(x2) y1 = self.cv6(self.cv5(torch.cat((x1,x2,x3, self.m(x3)),1))) y2 = self.cv2(x) return self.cv7(torch.cat((y1, y2), dim=1))
1.8 SPPELAN
YOLOv9
最新更新的模块,原理很简单,感兴趣可以试试~
import numpy as npimport torch.nn as nnimport torchdef autopad(k, p=None, d=1): # kernel, padding, dilation # Pad to 'same' shape outputs if d > 1: k = ( d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] ) # actual kernel-size if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return pclass Conv(nn.Module): # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation) default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): super().__init__() self.conv = nn.Conv2d( c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False ) self.bn = nn.BatchNorm2d(c2) self.act = ( self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() ) def forward(self, x): return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): return self.act(self.conv(x))class SP(nn.Module): def __init__(self, k=3, s=1): super(SP, self).__init__() self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2) def forward(self, x): return self.m(x)class SPPELAN(nn.Module): # spp-elan def __init__( self, c1, c2, c3 ): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() self.c = c3 self.cv1 = Conv(c1, c3, 1, 1) self.cv2 = SP(5) self.cv3 = SP(5) self.cv4 = SP(5) self.cv5 = Conv(4 * c3, c2, 1, 1) def forward(self, x): y = [self.cv1(x)] y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4]) return self.cv5(torch.cat(y, 1))
2 参数量对比
这里我在yolov5s.yaml
中使用各个模型替换SPP
模块
模型 | 参数量(parameters) | 计算量(GFLOPs) |
---|---|---|
SPP | 7225885 | 16.5 |
SPPF | 7235389 | 16.5 |
SimSPPF | 7235389 | 16.5 |
ASPP | 15485725 | 23.1 |
BasicRFB | 7895421 | 17.1 |
SPPCSPC | 13663549 | 21.7 |
SPPFCSPC🍀 | 13663549 | 21.7 |
分组SPPCSPC | 8355133 | 17.4 |
3 改进方式
第一步;各个代码放入common.py
中
第二步;yolo.py
中加入类名
第三步;修改配置文件
yolov5配置文件如下:
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# YOLOv5 v6.0 backbonebackbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 # [-1, 1, ASPP, [512]], # 9 # [-1, 1, SPP, [1024]], # [-1, 1, SimSPPF, [1024, 5]], # [-1, 1, BasicRFB, [1024]], # [-1, 1, SPPCSPC, [1024]], # [-1, 1, SPPFCSPC, [1024, 5]], # 🍀 ]
4 Issue
Q:Why use SPPCSPC instead of SPPFCSPC? /
yolov5’s SPPF is much faster than SPP.
Why not try to replace SPPCSPC with SPPFCSPC?
A:
Max pooling uses very few computation, if you programming well, above one could run three max pool layers in parallel, while below one must process three max pool layers sequentially.
By the way, you could replace SPPCSPC by SPPFCSPC at inference time if your hardware is friendly to SPPFCSPC.
感兴趣的可以试一下
本人更多YOLOv5实战内容导航🍀🌟🚀
手把手带你调参Yolo v5 (v6.2)(推理)🌟强烈推荐
手把手带你调参Yolo v5 (v6.2)(训练)🚀
手把手带你调参Yolo v5 (v6.2)(验证)
如何快速使用自己的数据集训练Yolov5模型
手把手带你Yolov5 (v6.2)添加注意力机制(一)(并附上30多种顶会Attention原理图)🌟强烈推荐🍀新增8种
手把手带你Yolov5 (v6.2)添加注意力机制(二)(在C3模块中加入注意力机制)
Yolov5如何更换激活函数?
Yolov5如何更换BiFPN?
Yolov5 (v6.2)数据增强方式解析
Yolov5更换上采样方式( 最近邻 / 双线性 / 双立方 / 三线性 / 转置卷积)
Yolov5如何更换EIOU / alpha IOU / SIoU?
Yolov5更换主干网络之《旷视轻量化卷积神经网络ShuffleNetv2》
YOLOv5应用轻量级通用上采样算子CARAFE
空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC🚀
用于低分辨率图像和小物体的模块SPD-Conv
GSConv+Slim-neck 减轻模型的复杂度同时提升精度🍀
头部解耦 | 将YOLOX解耦头添加到YOLOv5 | 涨点杀器🍀
Stand-Alone Self-Attention | 搭建纯注意力FPN+PAN结构🍀
YOLOv5模型剪枝实战🚀
YOLOv5知识蒸馏实战🚀
YOLOv7知识蒸馏实战🚀
改进YOLOv5 | 引入密集连接卷积网络DenseNet思想 | 搭建密集连接模块🍀
有问题欢迎大家指正,如果感觉有帮助的话请点赞支持下👍📖🌟
更新日志:2022年8月16日上午9:33分前在图片中增加感受野标注🍀
更新日志:2022年8月29日晚上11点40分在文中增加了SimSPPF
模块,并测试了速度
更新日志:2022年8月30日修正了SPPCSPC
的结构图
更新日志:2022年8月30日增加了SPPFCSPC
的结构
更新日志:2023年5月19日修复了RFB
的小错误
更新日志:2023年7月23日修复了RFB
的Bug
参考文献:增强感受野SPP、ASPP、RFB、PPM
上一篇: 【C#】pdf按页分割文件,以及分页合并,效果还不错,你值得拥有
下一篇: YOLOv8部署到C++上(综合版笔记)
本文标签
空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC / SPPELAN
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。