最常用集合

cnblogs 2024-08-31 08:09:01 阅读 89

ArrayList介绍

ArrayList实现了List接口,是顺序容器,即元素存放的数据与放进去的顺序相同,允许放入null元素,底层通过数组实现。除该类未实现同步外,其余跟Vector大致相同。每个ArrayList都有一个容量(capacity),表示底层数组的实际大小,容器内存储元素的个数不能多于当前容量。当向容器中添加元素时,如果容量不足,容器会自动增大底层数组的大小。

ArrayList 在JDK1.8 前后的实现区别:

    <li>JDK1.7:像饿汉式,直接创建一个初始容量为10的数组
  • JDK1.8:像懒汉式,一开始创建一个长度为0的数组,当添加add第一个元素时再创建一个初始容量为10的数组

size(), isEmpty(), get(), set()方法均能在常数时间内完成,add()方法的时间开销跟插入位置有关,addAll()方法的时间开销跟添加元素的个数成正比。其余方法大都是线性时间。

为追求效率,ArrayList没有实现同步(synchronized),如果需要多个线程并发访问,用户可以手动同步,也可使用Vector替代

底层原理介绍

底层数据结构

<code>//集合默认容量10;

private static final int DEFAULT_CAPACITY = 10;

//空数组

private static final Object[] EMPTY_ELEMENTDATA = {};

//默认容量的空的数组

private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

// 集合中真实存储数据的数组

transient Object[] elementData; // non-private to simplify nested class access

//集合中元素的个数,注意,这里不是数组的长度

private int size;

构造方法

public ArrayList() {

//将属性中默认的空的数组赋值给了 存储数据的变量

this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;

//等价于this.elementData = {}

}

//有参构造

public ArrayList(int initialCapacity) {

//给定初始容量,就创建一个这个容量大小的数组

if (initialCapacity > 0) {

this.elementData = new Object[initialCapacity];

} else if (initialCapacity == 0) {

//如果传递的是0 就将{}赋值给elementData

this.elementData = EMPTY_ELEMENTDATA;

//等价于this.elementData = {}

} else {

//如果传递的是负数,就会抛异常

//java.lang.IllegalArgumentException: Illegal Capacity: -20

throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity);

}

}

自动扩容

每当向数组中添加元素时,都要去检查添加后元素的个数是否会超出当前数组的长度,如果超出,数组将会进行扩容,以满足添加数据的需求。

private void grow(int minCapacity) {

// overflow-conscious code

int oldCapacity = elementData.length;

//动态扩容,扩容为原来的1.5倍,右移一位即原来的一半

int newCapacity = oldCapacity + (oldCapacity >> 1);

if (newCapacity - minCapacity < 0)

newCapacity = minCapacity;

//判断新容量是否会超过最大限制

if (newCapacity - MAX_ARRAY_SIZE > 0)

newCapacity = hugeCapacity(minCapacity);

// minCapacity is usually close to size, so this is a win:

elementData = Arrays.copyOf(elementData, newCapacity);//数组的复制操作

}

扩容方法流程:

  1. 首先获取数组长度

  2. 将数组新容量扩容为原数组容量的1.5倍取整

  3. 将新容量和当前所需最小容量做对比,(最小容量是在add方法中得到的,minCapacity=size+1,即原数组中元素数量加1),而newCapacity=elementData.length*1.5,一般来说肯定是1.5倍比+1的大。但是这里要考虑当数组为空时的情况。数组为空又分为两种情况:①指定了数组容量为0 ②没有显式指定数组大小。

    • 当数组为空时进行插入操作,因为元素个数size为0,数组容量也为0,那么就会进行扩容操作,对于空数组,扩容1.5倍后你的容量还是为0,那么此时就会小于我所需的最小容量(也就是1),此时会令 newCapacity = minCapacity;

    • 而对于①,传入到grow方法的minCapacity = 1 ,因此它扩容后的容量就是1

    • 对于②,在ensureCapacityInternal方法中,使minCapacity = DEFAULT_CAPACITY(10),因此扩容后的数组长度就是DEFAULT_CAPACITY,也就是10。

      • 原因在于在有参构造方法中使this.elementData = EMPTY_ELEMENTDATA;(无参构造方法中this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;),此时在ensureCapacityInternal方法中会对this.elementData进行判断,因此对于①,传入到grow方法的minCapacity = 1;而对于②,minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity),即minCapacity = 10

if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {

//比较大小,此时 minCapacity = 10

minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);

}

    <li>最后判断新容量大小是否大于默认数组的最大值(Integer.MAX_VALUE-8),则赋予它整型的最大值
  1. 扩容之后,会调用Arrays.copyOf()方法对数组进行拷贝。

实际上,对数组的copy需要创建一个新数组,并对原数组进行复制的操作,这会造成资源消耗。因此在添加大量元素前,建议使用ensureCapacity操作先增加 ArrayList 实例的容量,先进行稍少量数组数据的copy,再添加元素

add(), addAll()

add 操作可能会导致capacity不足,因此在添加元素之前,都需要进行剩余空间检查,如果需要则自动扩容。扩容操作最终是通过grow()方法完成的。

假设使用的是空参构造,第一次添加元素 add(1)

<code>public boolean add(E e) {

//确保内部容量 0 + 1

ensureCapacityInternal(size + 1); // Increments modCount!!

//将要添加的元素添加到数组有数据的下一个位置

elementData[size++] = e;

return true;

}

private void ensureCapacityInternal(int minCapacity) {//第一次添加: minCapacity = 1

//有参构造的情况:new Object[10] != {},不会执行if内的语句。即使有参构造给的是0,也不会执行,因为此时elementData = EMPTY_ELEMENTDATA,不等于DEFAULTCAPACITY_EMPTY_ELEMENTDATA

// 无参构造的情况下:{} = {} 会执行Math.max语句

if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {

//比较大小,此时 minCapacity = 10

minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);

}

//明确数组的容量

ensureExplicitCapacity(minCapacity);

}

private void ensureExplicitCapacity(int minCapacity) {

modCount++;//记录当前集合操作的次数

// overflow-conscious code

if (minCapacity - elementData.length > 0)

grow(minCapacity);//扩容操作

}

addAll()方法能够一次添加多个元素,根据位置不同也有两个版本,

  • 在末尾添加的addAll(Collection<? extends E> c)方法,

  • 从指定位置开始插入的addAll(int index, Collection<? extends E> c)方法

跟add()方法类似,在插入之前也需要进行空间检查,如果需要则自动扩容;如果从指定位置插入,也会存在移动元素的情况。 addAll()的时间复杂度不仅跟插入元素的多少有关,也跟插入的位置相关。

set()

由于底层是数组,因此set()方法就是直接对数组的指定位置赋值。

public E set(int index, E element) {

rangeCheck(index);//下标越界检查

E oldValue = elementData(index);

elementData[index] = element;//赋值到指定位置,复制的仅仅是引用

return oldValue;

}

get()

由于底层是数组,get()方法也是直接从数组索引处获取值,唯一要注意的是由于底层数组是Object[],得到元素后需要进行类型转换。

public E get(int index) {

rangeCheck(index);

return (E) elementData[index];//注意类型转换

}

remove方法

remove()方法也有两个

  • remove(int index)删除指定位置的元素,

  • remove(Object o)删除第一个满足o.equals(elementData[index])的元素。

删除操作是add()操作的逆过程,会需要将删除点之后的元素向前移动一个位置

public E remove(int index) {

rangeCheck(index);

modCount++;

E oldValue = elementData(index);

int numMoved = size - index - 1;

if (numMoved > 0)

//判断要删除的索引是否是最后一个,,如果不是最后一个,就需要进行数组的复制操作

System.arraycopy(elementData, index+1, elementData, index,

numMoved);

//然后把最后一个元素置为空,让GC起作用

elementData[--size] = null; // clear to let GC do its work

return oldValue;

}

trimToSize()

将底层数组的容量调整为当前列表保存的实际元素的大小的功能

/**

* Trims the capacity of this <tt>ArrayList</tt> instance to be the

* list's current size. An application can use this operation to minimize

* the storage of an <tt>ArrayList</tt> instance.

*/

public void trimToSize() {

modCount++;

if (size < elementData.length) {

elementData = (size == 0)

? EMPTY_ELEMENTDATA

: Arrays.copyOf(elementData, size);

}

}

indexOf(), lastIndexOf()

获取元素的第一次出现的index:

public int indexOf(Object o) {

if (o == null) {

for (int i = 0; i < size; i++)

if (elementData[i]==null)

return i;

} else {

for (int i = 0; i < size; i++)

if (o.equals(elementData[i]))

return i;

}

return -1;

}

获取元素的最后一次出现的index:

public int lastIndexOf(Object o) {

if (o == null) {

for (int i = size-1; i >= 0; i--)

if (elementData[i]==null)

return i;

} else {

for (int i = size-1; i >= 0; i--)

if (o.equals(elementData[i]))

return i;

}

return -1;

}

遍历时删除(添加)常见陷阱

for循环遍历list

删除某个元素后,list的大小发生了变化,而索引也在变化,所以会导致遍历的时候漏掉某些元素。比如当删除第1个元素后,继续根据索引访问第2个元素时,因为删除的关系后面的元素都往前移动了一位,所以实际访问的是第3个元素。因此,这种方式可以用在删除特定的一个元素时使用,但不适合循环删除多个元素时使用。

for(int i=0;i<list.size();i++){

if(list.get(i).equals("del"))

list.remove(i);

}

解决办法:

//从list最后一个元素开始遍历

//从list最后一个元素开始遍历

for(int i=list.size()-1;i>+0;i--){

if(list.get(i).equals("del"))

list.remove(i);

}

增强for循环

删除元素后继续循环会抛异常java.util.ConcurrentModificationException,因为元素在使用的时候发生了并发的修改

for(String x:list){

if(x.equals("del"))

list.remove(x);

}

解决方法:但只能删除一个"del"元素

//解决:删除完毕马上使用break跳出,则不会触发报错

for(String x:list){

if (x.equals("del")) {

list.remove(x);

break;

}

}

iterator遍历

这种方式可以正常的循环及删除。但要注意的是,使用iterator的remove方法,如果用list的remove方法同样会报上面提到的ConcurrentModificationException错误。

Iterator<String> it = list.iterator();

while(it.hasNext()){

String x = it.next();

if(x.equals("del")){

it.remove();

}

}

FailFast机制

上面提到的ConcurrentModificationException异常,都是有这个机制的存在,通过记录modCount参数来实现。在面对并发的修改时,迭代器很快就会完全失败,而不是冒着在将来某个不确定时间发生任意不确定行为的风险。

fail-fast 机制是java集合(Collection)中的一种错误机制。当多个线程对同一个集合的内容进行操作时,就可能会产生fail-fast事件。例如:当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A遍历集合时,即出现expectedModCount != modCount 时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。

if (modCount != expectedModCount)

throw new ConcurrentModificationException();

fail-fast 机制并不保证在不同步的修改下抛出异常,他只是尽最大努力去抛出,所以这种机制一般仅用于检测 bug

解决 fail-fast的解决方案:

    <li>在遍历过程中所有涉及到改变modCount值得地方全部加上synchronized或者直接使用Collections.synchronizedList,这样就可以解决(实际上Vector结构就是这样实现的)。但是不推荐,因为增删造成的同步锁可能会阻塞遍历操作。

<code>List<Integer> arrsyn = Collections.synchronizedList(arr);

    <li>使用CopyOnWriteArrayList来替换ArrayList。推荐使用该方案。CopyOnWriteArrayList是兼顾了并发的线程安全

ArrayList和Vector和CopyOnWriteArrayList和LinkedList

继承关系结构图:

ArrayList和Vector和CopyOnWriteArrayList的区别:

    <li>

    ArrayList非线程安全的,如果需要考虑到线程安全问题,那么可以使用Vector和CopyOnWriteArrayList;

  • Vector和CopyOnWriteArrayList的区别是:Vector增删改查方法都加了synchronized,保证同步,但是每个方法执行的时候都要去获得锁,性能就会大大下降,而CopyOnWriteArrayList 只是在增删改上加锁,但是读不加锁,在读方面的性能就好于Vector,CopyOnWriteArrayList支持读多写少的并发情况。

ArrayList和LinkedList的区别:

  • ArrayList基于动态数组实现;

  • LinkedList基于链表实现。对于随机index访问的get和set方法,ArrayList的速度要优于LinkedList。因为ArrayList直接通过数组下标直接找到元素;LinkedList要移动指针遍历每个元素直到找到为止。

  • 对于 add(int index, E element),remove(int index)的操作:LinkedList 和 ArrayList的时间复杂度一样,都是O(n);虽然时间复杂度一样,但实际执行时间是不一样的,如下代码所示:

    <code>List<Integer> a = Lists.newArrayList();

    List<Integer> b = Lists.newLinkedList();

    Random r = new Random();

    a.add(0);

    b.add(0);

    long startTime = System.currentTimeMillis();

    for (int i = 0; i <= 20000; i++) {

    int p = r.nextInt(a.size());

    a.add(p, 0);

    }

    System.out.println(System.currentTimeMillis() - startTime);// 6

    startTime = System.currentTimeMillis();

    for (int i = 0; i <= 20000; i++) {

    int p = r.nextInt(b.size());

    b.add(p, 0);

    }

    System.out.println(System.currentTimeMillis() - startTime);// 205

    虽然ArrayList在索引位置新增或删除数据时需要移动数据(往前移、往后移),但是在连续内存中的块的数据,是可以操作整片内存的。而LinkedList需要一个一个的先查找到具体索引位置的元素,所以在寻址方面数组的效率高于链表。

  • 对于add新增元素:理论上来说LinkedList的速度(O(1))要优于ArrayList(O(n)),因为ArrayList在新增和删除元素时,可能会扩容和复制数组;LinkedList只需要修改指针即可。但在实际测试中,在数据量小的情况下,两者执行时间几乎一致;增大数据量后,就能看出区别了,如下代码所示:

    List<Integer> a = Lists.newArrayList();

    List<Integer> b = Lists.newLinkedList();

    a.add(0);

    b.add(0);

    long startTime = System.currentTimeMillis();

    for (int i = 0; i <= 2000000; i++) {

    int p = r.nextInt(a.size());

    a.add(0);

    }

    System.out.println(System.currentTimeMillis() - startTime);// 34

    startTime = System.currentTimeMillis();

    for (int i = 0; i <= 2000000; i++) {

    int p = r.nextInt(b.size());

    b.add(0);

    }

    System.out.println(System.currentTimeMillis() - startTime);// 271

    这是因为LinkedList 存在一定的性能问题

关于作者

来自一线程序员Seven的探索与实践,持续学习迭代中~

本文已收录于我的个人博客:https://www.seven97.top

公众号:seven97,欢迎关注~



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。