轨迹优化 | 图解欧氏距离场与梯度场算法(附ROS C++/Python实现)
CSDN 2024-06-21 13:05:02 阅读 82
目录
0 专栏介绍 1 什么是距离场? 2 欧氏距离场计算原理 3 双线性插值与欧式梯度场 4 仿真实现 4.1 ROS C++实现 4.2 Python实现
0 专栏介绍
🔥课程设计、毕业设计、创新竞赛、学术研究必备!本专栏涉及更高阶的运动规划算法实战:曲线生成与轨迹优化、碰撞模型与检测、多智能体群控、深度强化学习运动规划、社会性导航、全覆盖路径规划等内容,每个模型都包含代码实现加深理解。
🚀详情:运动规划实战进阶
1 什么是距离场?
距离场(Distance Field)也称为距离变换(Distance Transform),在图像处理和模式识别中是一种重要工具,其核心思想是将图像中每个像素点的值表示为到最近的目标像素的距离度量,更高维的情况依次类推。在计算机视觉领域,距离场是图像分割和配准的基础,在运动规划中则常用于地图建模(广义Voronoi图计算)和轨迹梯度优化。
给定点集 G \mathcal{G}
上一篇: IDEA(21.1终极版本)的安装教程及环境配置 Maven和(JDK)
本文标签
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。