【C++航海王:追寻罗杰的编程之路】关联式容器的底层结构——AVL树
枫叶丹4 2024-07-10 12:05:03 阅读 68
目录
1 -> 底层结构
2 -> AVL树
2.1 -> AVL树的概念
2.2 -> AVL树节点的定义
2.3 -> AVL树的插入
2.4 -> AVL树的旋转
2.5 -> AVL树的验证
2.6 -> AVL树的性能
1 -> 底层结构
在上文中对对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中
插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此
map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。
2 -> AVL树
2.1 -> AVL树的概念
二叉搜索树虽然可以缩短查找的效率,但如果数据有序或者接近有序的二叉搜索树将退化成单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新节点后,如果能保证每个节点的左右子树的高度差的绝对值不超过1(需要对树中的节点进行调整),即可降低树的高度,从而减少平均搜索的长度。
一棵AVL树或者空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是AVL树左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个节点,其高度可保持在O(n),搜索时间复杂度O(n)。
2.2 -> AVL树节点的定义
AVL树节点的定义:
<code>#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
template<class T>
struct AVLTreeNode
{
AVLTreeNode(const T& data)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _bf(0)
{}
AVLTreeNode<T>* _pLeft; // 该节点的左孩子
AVLTreeNode<T>* _pRight; // 该节点的右孩子
AVLTreeNode<T>* _pParent; // 该节点的双亲
T _data;
int _bf; // 该节点的平衡因子
};
2.3 -> AVL树的插入
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:
按照二叉搜索树的方式插入新节点。调整节点的平衡因子。
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
template<class T>
struct AVLTreeNode
{
AVLTreeNode(const T& data)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _bf(0)
{}
AVLTreeNode<T>* _pLeft; // 该节点的左孩子
AVLTreeNode<T>* _pRight; // 该节点的右孩子
AVLTreeNode<T>* _pParent; // 该节点的双亲
T _data;
int _bf; // 该节点的平衡因子
bool Insert(const T& data)
{
// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,
// 此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
/*
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足
AVL树的性质,插入成功
2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此
时以pParent为根的树的高度增加,需要继续向上更新
3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
行旋转处理
*/
while (pParent)
{
// 更新双亲的平衡因子
if (pCur == pParent->_pLeft)
pParent->_bf--;
else
pParent->_bf++;
// 更新后检测双亲的平衡因子
if (0 == pParent->_bf)
{
break;
}
else if (1 == pParent->_bf || -1 == pParent->_bf)
{
// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树
// 的高度增加了一层,因此需要继续向上调整
pCur = pParent;
pParent = pCur->_pParent;
}
else
{
// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
// 为根的树进行旋转处理
if (2 == pParent->_bf)
{
// ...
}
else
{
// ...
}
}
}
return true;
}
};
2.4 -> AVL树的旋转
如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:
1. 新节点插入较高左子树的左侧——左左:右单旋
<code>#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
template<class T>
struct AVLTreeNode
{
AVLTreeNode(const T& data)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _bf(0)
{}
AVLTreeNode<T>* _pLeft; // 该节点的左孩子
AVLTreeNode<T>* _pRight; // 该节点的右孩子
AVLTreeNode<T>* _pParent; // 该节点的双亲
T _data;
int _bf; // 该节点的平衡因子
bool Insert(const T& data)
{
// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,
// 此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
/*
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足
AVL树的性质,插入成功
2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此
时以pParent为根的树的高度增加,需要继续向上更新
3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
行旋转处理
*/
while (pParent)
{
// 更新双亲的平衡因子
if (pCur == pParent->_pLeft)
pParent->_bf--;
else
pParent->_bf++;
// 更新后检测双亲的平衡因子
if (0 == pParent->_bf)
{
break;
}
else if (1 == pParent->_bf || -1 == pParent->_bf)
{
// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树
// 的高度增加了一层,因此需要继续向上调整
pCur = pParent;
pParent = pCur->_pParent;
}
else
{
// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
// 为根的树进行旋转处理
if (2 == pParent->_bf)
{
// ...
}
else
{
// ...
}
}
}
return true;
}
/*
在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,
只能将60左子树的高度减少一层,右子树增加一层,
即将左子树往上提,这样60转下来,因为60比30大,
只能将其放在30的右子树,而如果30有右子树,
右子树根的值一定大于30,小于60,只能将其放在60的左子树,
旋转完成后,更新节点的平衡因子即可。
在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在
2. 60可能是根节点,也可能是子树如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树
*/
void _RotateR(PNode pParent)
{
// pSubL: pParent的左孩子
// pSubLR: pParent左孩子的右孩子
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转完成之后,30的右孩子作为双亲的左孩子
pParent->_pLeft = pSubLR;
// 如果30的左孩子的右孩子存在,更新亲双亲
if (pSubLR)
pSubLR->_pParent = pParent;
// 60 作为 30的右孩子
pSubL->_pRight = pParent;
// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
PNode pPParent = pParent->_pParent;
// 更新60的双亲
pParent->_pParent = pSubL;
// 更新30的双亲
pSubL->_pParent = pPParent;
// 如果60是根节点,根新指向根节点的指针
if (NULL == pPParent)
{
_pRoot = pSubL;
pSubL->_pParent = NULL;
}
else
{
// 如果60是子树,可能是其双亲的左子树,也可能是右子树
if (pPParent->_pLeft == pParent)
pPParent->_pLeft = pSubL;
else
pPParent->_pRight = pSubL;
}
// 根据调整后的结构更新部分节点的平衡因子
pParent->_bf = pSubL->_bf = 0;
}
};
2. 新节点插入较高右子树的右侧——右右:左单旋
实现参考右单旋。
3. 新节点插入较高左子树的右侧——左右:先左单旋再右单旋
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。
<code>#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
template<class T>
struct AVLTreeNode
{
AVLTreeNode(const T& data)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _bf(0)
{}
AVLTreeNode<T>* _pLeft; // 该节点的左孩子
AVLTreeNode<T>* _pRight; // 该节点的右孩子
AVLTreeNode<T>* _pParent; // 该节点的双亲
T _data;
int _bf; // 该节点的平衡因子
bool Insert(const T& data)
{
// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,
// 此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
/*
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足
AVL树的性质,插入成功
2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此
时以pParent为根的树的高度增加,需要继续向上更新
3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
行旋转处理
*/
while (pParent)
{
// 更新双亲的平衡因子
if (pCur == pParent->_pLeft)
pParent->_bf--;
else
pParent->_bf++;
// 更新后检测双亲的平衡因子
if (0 == pParent->_bf)
{
break;
}
else if (1 == pParent->_bf || -1 == pParent->_bf)
{
// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树
// 的高度增加了一层,因此需要继续向上调整
pCur = pParent;
pParent = pCur->_pParent;
}
else
{
// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
// 为根的树进行旋转处理
if (2 == pParent->_bf)
{
// ...
}
else
{
// ...
}
}
}
return true;
}
//1. 新节点插入较高左子树的左侧——左左:右单旋
/*
在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,
只能将60左子树的高度减少一层,右子树增加一层,
即将左子树往上提,这样60转下来,因为60比30大,
只能将其放在30的右子树,而如果30有右子树,
右子树根的值一定大于30,小于60,只能将其放在60的左子树,
旋转完成后,更新节点的平衡因子即可。
在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在
2. 60可能是根节点,也可能是子树如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树
*/
void _RotateR(PNode pParent)
{
// pSubL: pParent的左孩子
// pSubLR: pParent左孩子的右孩子
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转完成之后,30的右孩子作为双亲的左孩子
pParent->_pLeft = pSubLR;
// 如果30的左孩子的右孩子存在,更新亲双亲
if (pSubLR)
pSubLR->_pParent = pParent;
// 60 作为 30的右孩子
pSubL->_pRight = pParent;
// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
PNode pPParent = pParent->_pParent;
// 更新60的双亲
pParent->_pParent = pSubL;
// 更新30的双亲
pSubL->_pParent = pPParent;
// 如果60是根节点,根新指向根节点的指针
if (NULL == pPParent)
{
_pRoot = pSubL;
pSubL->_pParent = NULL;
}
else
{
// 如果60是子树,可能是其双亲的左子树,也可能是右子树
if (pPParent->_pLeft == pParent)
pPParent->_pLeft = pSubL;
else
pPParent->_pRight = pSubL;
}
// 根据调整后的结构更新部分节点的平衡因子
pParent->_bf = pSubL->_bf = 0;
}
//3. 新节点插入较高左子树的右侧——左右:先左单旋再右单旋
// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
{
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
int bf = pSubLR->_bf;
// 先对30进行左单旋
_RotateL(pParent->_pLeft);
// 再对90进行右单旋
_RotateR(pParent);
if (1 == bf)
pSubL->_bf = -1;
else if (-1 == bf)
pParent->_bf = 1;
}
};
4. 新节点插入较高右子树的左侧——右左:先右单旋再左单旋
参考左右双旋。
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分为以下情况考虑:
1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR。
当pSubR的平衡因子为1时,执行左单旋。当pSubR的平衡因子为-1时,执行右左单旋。
2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL。
当pSubL的平衡因子为-1时,执行右单旋。当pSubL的平衡因子为1时,执行左右单旋。
旋转完成后,原pParent为根的子树高度降低,已经平衡,不需要再向上更新。
2.5 -> AVL树的验证
AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分为两步:
1. 验证其为二叉搜索树
如果中序遍历可以得到一个有序的序列,就说明其为二叉搜索树。
2. 验证其为平衡树
每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)。节点的平衡因子是否计算正确。
<code>#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
template<class T>
struct AVLTreeNode
{
AVLTreeNode(const T& data)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _bf(0)
{}
AVLTreeNode<T>* _pLeft; // 该节点的左孩子
AVLTreeNode<T>* _pRight; // 该节点的右孩子
AVLTreeNode<T>* _pParent; // 该节点的双亲
T _data;
int _bf; // 该节点的平衡因子
bool Insert(const T& data)
{
// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,
// 此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
/*
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足
AVL树的性质,插入成功
2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此
时以pParent为根的树的高度增加,需要继续向上更新
3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
行旋转处理
*/
while (pParent)
{
// 更新双亲的平衡因子
if (pCur == pParent->_pLeft)
pParent->_bf--;
else
pParent->_bf++;
// 更新后检测双亲的平衡因子
if (0 == pParent->_bf)
{
break;
}
else if (1 == pParent->_bf || -1 == pParent->_bf)
{
// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树
// 的高度增加了一层,因此需要继续向上调整
pCur = pParent;
pParent = pCur->_pParent;
}
else
{
// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
// 为根的树进行旋转处理
if (2 == pParent->_bf)
{
// ...
}
else
{
// ...
}
}
}
return true;
}
//1. 新节点插入较高左子树的左侧——左左:右单旋
/*
在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,
只能将60左子树的高度减少一层,右子树增加一层,
即将左子树往上提,这样60转下来,因为60比30大,
只能将其放在30的右子树,而如果30有右子树,
右子树根的值一定大于30,小于60,只能将其放在60的左子树,
旋转完成后,更新节点的平衡因子即可。
在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在
2. 60可能是根节点,也可能是子树如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树
*/
void _RotateR(PNode pParent)
{
// pSubL: pParent的左孩子
// pSubLR: pParent左孩子的右孩子
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转完成之后,30的右孩子作为双亲的左孩子
pParent->_pLeft = pSubLR;
// 如果30的左孩子的右孩子存在,更新亲双亲
if (pSubLR)
pSubLR->_pParent = pParent;
// 60 作为 30的右孩子
pSubL->_pRight = pParent;
// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
PNode pPParent = pParent->_pParent;
// 更新60的双亲
pParent->_pParent = pSubL;
// 更新30的双亲
pSubL->_pParent = pPParent;
// 如果60是根节点,根新指向根节点的指针
if (NULL == pPParent)
{
_pRoot = pSubL;
pSubL->_pParent = NULL;
}
else
{
// 如果60是子树,可能是其双亲的左子树,也可能是右子树
if (pPParent->_pLeft == pParent)
pPParent->_pLeft = pSubL;
else
pPParent->_pRight = pSubL;
}
// 根据调整后的结构更新部分节点的平衡因子
pParent->_bf = pSubL->_bf = 0;
}
//3. 新节点插入较高左子树的右侧——左右:先左单旋再右单旋
// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
{
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
int bf = pSubLR->_bf;
// 先对30进行左单旋
_RotateL(pParent->_pLeft);
// 再对90进行右单旋
_RotateR(pParent);
if (1 == bf)
pSubL->_bf = -1;
else if (-1 == bf)
pParent->_bf = 1;
}
//验证是否为AVL树
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
// 空树也是AVL树
if (nullptr == pRoot) return true;
// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
int leftHeight = _Height(pRoot->_pLeft);
int rightHeight = _Height(pRoot->_pRight);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
// pRoot平衡因子的绝对值超过1,则一定不是AVL树
if (diff != pRoot->_bf || (diff > 1 || diff < -1))
return false;
// pRoot的左和右如果都是AVL树,则该树一定是AVL树
return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot->_pRight);
}
};
2.6 -> AVL树的性能
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即O(n)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树。
感谢各位大佬支持!!!
互三啦!!!
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。