C++【STL】改造红黑树简单模拟实现set map(带你了解set map的底层实现结构)
.自定义. 2024-06-20 16:35:11 阅读 73
目录
一、学前铺垫(泛型编程)
二、改造红黑树
1.红黑树节点的改造
2.insert的改造
3.迭代器的实现
4.完整改造代码
三、set的模拟实现封装
四、map的模拟实现封装
五、完结撒❀
前言:
下面为了简单模拟实现set map所出现的代码是以C++中STL源码库中的代码逻辑基础进行的简化代码,本片博客目的是带你简单深入底层,了解set map底层的实现逻辑,对泛型编程有更加深刻的认识。
一、学前铺垫(泛型编程)
本篇博客我们通过对一个红黑树进行改造,使其可以让set和map的模拟实现都使用这一个红黑树结构,因为set map所存储的数据类型不一样,set底层存储的是pair<key,key>,map底层存储的是pair<key,value>,所以这里就一定会用上多个模板对红黑树进行改造,形成泛型编程,之后再对set map使用改造后的红黑树进行封装,达到模拟STL库中set map的效果。(有能力的可以直接去看STL中set map所实现的源码,逻辑与我所讲述的相同)
二、改造红黑树
1.红黑树节点的改造
这里节点的构造基本与二叉搜索树的节点构造相同,但是因为要同时兼顾set map两中类型,所以存储数据的类型不可以写死,要用到模板,节点代码如下:
template <class T>struct RBTreeNode{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Color _col;T _data;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}};
2.insert的改造
需要改造的地方:
1) 根据STL库中的set和map的insert的功能,插入成功返回插入位置所在的迭代器以及true,插入失败说明树中已存在改值,返回该值所在的位置的迭代器以及false,所以返回类型应为pair<iterator,bool>,所以返回类型需要进行改造。
2) 在insert中大小值的比较,因为要兼容set和map,而在set中的模板类型只需要一个就可以进行初始化,因为set中底层数据类型是一样的,而map不同,map底层类型其实是pair<key,pair<key,value>>实现,因为在实现find函数时需要用到key的值并且与set保持一致,所以将value类型定义为pair<key,value>,那么在后续的比较大小中就不能那么随意了,因为set直接拿其节点指向的_data进行比较即可,而map中的_data为pair<key,pair<key,value>>,不可以直接拿来进行比较,所以我们将代码进行改造。
下面是模拟实现set,map的简单封装。SetKeyOFT,MapKeyOFT就是解决大小比较所定义的内部类。
Mymap.h:
template <class K,class V>class map{public:struct MapKeyOFT{const K& operator()(const pair<K, V>& kv){return kv.first;}};private:RBTree<K, pair<K,V>, MapKeyOFT> _t;};
Myset.h:
template <class K>class set{public:struct SetKeyOFT{const K& operator()(const K& key){return key;}};private:RBTree<K,K, SetKeyOFT> _t;};
insert函数改造实现:
pair<iterator,bool> Insert(const T& data){//二叉树为空,插入第一个值if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return make_pair(iterator(_root),true);}KeyOfT kot;//后续插入Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else{//不允许冗余return make_pair(iterator(cur),false);}}//找到对应位置cur = new Node(data);cur->_parent = parent;Node* newcur = cur;if (kot(parent->_data) > kot(data)){parent->_left = cur;}else{parent->_right = cur;}//父亲的颜色是黑色也就结束while (parent && parent->_col == RED)//红黑树出现错误需要改正{Node* grandfather = parent->_parent;if (grandfather->_left == parent){//舅子树在右边Node* uncle = grandfather->_right;if (uncle && uncle->_col == RED){//存在且颜色为红parent->_col = BLACK;uncle->_col = BLACK;/*if (grandfather == _root){grandfather->_col = BLACK;}else{grandfather->_col = RED;}*/grandfather->_col = RED;cur = grandfather;parent = grandfather->_parent;}else{//舅子树不存在或颜色为黑if (parent->_left == cur){//单旋parent->_col = BLACK;grandfather->_col = RED;RNode(grandfather);}else{//双旋 先左再右LNode(parent);cur->_col = BLACK;grandfather->_col = RED;RNode(grandfather);}break;}}else{//舅子树在左边Node* uncle = grandfather->_left;if (uncle && uncle->_col == RED){parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = grandfather->_parent;}else{if (parent->_right == cur){//单旋parent->_col = BLACK;grandfather->_col = RED;LNode(grandfather);}else{//双旋RNode(parent);LNode(grandfather);grandfather->_col = RED;cur->_col = BLACK;}break;}}}_root->_col = BLACK;return make_pair(iterator(newcur),true);}
因为只在红黑树insert函数里面使用的都是模板,所以是不知道所传数据的具体类型,但是在模拟实现的set,map中知道其对应的类型,所以我们可以在set,map类里面定义一个类,在这个类里面定义一个仿函数用于提取所对应比较大小的值,再将这个类用模板参数传递给红黑树中,在需要比较大小时提前用这个类定义一个变量,在通过仿函数进行大小的比较,这样就可以实现set,map的兼容。
3.迭代器的实现
迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代 器,需要考虑以前问题: ● begin() 与 end()STL 明确规定, begin() 与 end() 代表的是一段前闭后开的区间,而对红黑树进行中序遍历后, 可以得到一个有序的序列,因此: begin() 可以放在红黑树中最小节点 ( 即最左侧节点 ) 的位 置 , end() 放在最大节点 ( 最右侧节点 ) 的下一个位置 ,关键是最大节点的下一个位置在哪块? 能否给成 nullptr 呢?答案是行不通的,因为 对 end() 位置的迭代器进行 -- 操作,必须要能找最 后一个元素 ,此处就不行,因此最好的方式是 将 end() 放在头结点的位置 :
● operator++()与operator--()
// 找迭代器的下一个节点,下一个节点肯定比其大void Increasement(){//分两种情况讨论:_pNode的右子树存在和不存在// 右子树存在if (_pNode->_pRight){// 右子树中最小的节点,即右子树中最左侧节点_pNode = _pNode->_pRight;while (_pNode->_pLeft)_pNode = _pNode->_pLeft;}else{// 右子树不存在,向上查找,直到_pNode != pParent->rightPNode pParent = _pNode->_pParent;while (pParent->_pRight == _pNode){_pNode = pParent;pParent = _pNode->_pParent;}// 特殊情况:根节点没有右子树if (_pNode->_pRight != pParent)_pNode = pParent;}}// 获取迭代器指向节点的前一个节点void Decreasement(){//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不存在// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置if (_pNode->_pParent->_pParent == _pNode && _pNode->_color == RED)_pNode = _pNode->_pRight;else if (_pNode->_pLeft){// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点_pNode = _pNode->_pLeft;while (_pNode->_pRight)_pNode = _pNode->_pRight;}else{// _pNode的左子树不存在,只能向上找PNode pParent = _pNode->_pParent;while (_pNode == pParent->_pLeft){_pNode = pParent;pParent = _pNode->_pParent;}_pNode = pParent;}}
4.完整改造代码
#pragma once#include <iostream>using namespace::std;enum Color{RED,//(0)BLACK//(1)};template <class T>struct RBTreeNode{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Color _col;T _data;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}};template <class T,class Ref,class Ptr>struct __RBTreeIterator{typedef RBTreeNode<T> Node;typedef __RBTreeIterator<T, Ref, Ptr> Self;Node* _node;__RBTreeIterator(Node* node):_node(node){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const Self& s){return _node != s._node;}Self& operator--(){if (_node->_left){//存在左子树Node* cur = _node->_left;while (cur->_right){cur = cur->_right;}_node = cur;}else{//不存在左子树Node* parent = _node->_parent;if (parent && parent->_left == _node){//为父亲的左孩子while (parent && parent->_left == _node){_node = parent;parent = parent->_parent;}_node = parent;}else{//为父亲的右孩子_node = parent;}}return *this;}Self& operator++(){if (_node->_right){//存在右子树_node = _node->_right;while (_node && _node->_left){_node = _node->_left;}}else{//不存在右子树Node* parent = _node->_parent;while (parent && _node == parent->_right){_node = parent;parent = parent->_parent;}_node = parent;}return *this;}};template <class K, class T, class KeyOfT>class RBTree{typedef RBTreeNode<T> Node;public:typedef __RBTreeIterator<T, T&, T*> iterator;typedef __RBTreeIterator<T,const T&,const T*> const_iterator;RBTree() = default;//强制编译器生成构造函数//拷贝构造RBTree(RBTree<K, const T, KeyOfT>& t){_root = copy(t._root);}iterator begin(){Node* LeftMin = _root;while (LeftMin && LeftMin->_left){LeftMin = LeftMin->_left;}return iterator(LeftMin);}iterator end(){return iterator(_root->_parent);}const_iterator begin() const{Node* LeftMin = _root;while (LeftMin && LeftMin->_left){LeftMin = LeftMin->_left;}return const_iterator(LeftMin);}const_iterator end() const{return const_iterator(nullptr);}//右单旋,满足二叉树引发右单旋之后平衡因子一定为0void RNode(Node* parent){Node* pparent = parent->_parent;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;parent->_parent = subL;if (pparent){subL->_parent = pparent;if (pparent->_left == parent){pparent->_left = subL;}else{pparent->_right = subL;}}else{_root = subL;subL->_parent = nullptr;}}//左单旋void LNode(Node* parent){Node* pparent = parent->_parent;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;parent->_parent = subR;if (pparent){subR->_parent = pparent;if (pparent->_left == parent){pparent->_left = subR;}else{pparent->_right = subR;}}else{_root = subR;subR->_parent = nullptr;}}pair<iterator,bool> Insert(const T& data){//二叉树为空,插入第一个值if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return make_pair(iterator(_root),true);}KeyOfT kot;//后续插入Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else{//不允许冗余return make_pair(iterator(cur),false);}}//找到对应位置cur = new Node(data);cur->_parent = parent;Node* newcur = cur;if (kot(parent->_data) > kot(data)){parent->_left = cur;}else{parent->_right = cur;}//父亲的颜色是黑色也就结束while (parent && parent->_col == RED)//红黑树出现错误需要改正{Node* grandfather = parent->_parent;if (grandfather->_left == parent){//舅子树在右边Node* uncle = grandfather->_right;if (uncle && uncle->_col == RED){//存在且颜色为红parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = grandfather->_parent;}else{//舅子树不存在或颜色为黑if (parent->_left == cur){//单旋parent->_col = BLACK;grandfather->_col = RED;RNode(grandfather);}else{//双旋 先左再右LNode(parent);cur->_col = BLACK;grandfather->_col = RED;RNode(grandfather);}break;}}else{//舅子树在左边Node* uncle = grandfather->_left;if (uncle && uncle->_col == RED){parent->_col = BLACK;uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = grandfather->_parent;}else{if (parent->_right == cur){//单旋parent->_col = BLACK;grandfather->_col = RED;LNode(grandfather);}else{//双旋RNode(parent);LNode(grandfather);grandfather->_col = RED;cur->_col = BLACK;}break;}}}_root->_col = BLACK;return make_pair(iterator(newcur),true);}bool IsRBTree(){if (_root->_col == RED){cout << "根节点为红节点" << endl;return false;}int DefNum = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK){DefNum++;}cur = cur->_left;}return _Check(_root, 0, DefNum);}~RBTree(){Destory(_root); _root = nullptr;}private:Node* copy(const Node* root){if (root == nullptr){return nullptr;}Node* newnode = new Node(root->_data);newnode->_col = root->_col;newnode->_left = copy(root->_left);if(newnode->_left)newnode->_left->_parent = newnode;newnode->_right = copy(root->_right);if (newnode->_left)newnode->_left->_parent = newnode;return newnode;}void Destory(Node* root){if (root == nullptr){return;}Destory(root->_left);Destory(root->_right);delete root;root = nullptr;}bool _Check(Node* root, int BlackNum, int DefNum){if (root == nullptr){if (BlackNum != DefNum){cout << BlackNum << "|" << DefNum << endl;cout << "存在黑色节点数量不相等的路径" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << root->_kv.first << "->存在连续的两个红节点" << endl;return false;}if (root->_col == BLACK){BlackNum++;}return _Check(root->_left, BlackNum, DefNum)&& _Check(root->_right, BlackNum, DefNum);}Node* _root = nullptr;};
三、set的模拟实现封装
set 的底层为红黑树,因此只需在 set 内部封装一棵红黑树,即可将该容器实现出来 ( 具体实现可参 考 map) 。template <class K>class set{public:struct SetKeyOFT{const K& operator()(const K& key){return key;}};typedef typename RBTree<K, K, SetKeyOFT>::iterator iterator;typedef typename RBTree<K, const K, SetKeyOFT>::iterator const_iterator;pair<iterator,bool> insert(const K& key){ return _t.Insert(key);}iterator begin(){return _t.begin();}iterator end(){return _t.end();}const_iterator begin() const{return _t.begin();}const_iterator end() const{return _t.end();}private:RBTree<K, const K, SetKeyOFT> _t;};
四、map的模拟实现封装
template <class K,class V>class map{public:struct MapKeyOFT{const K& operator()(const pair<K, V>& kv){return kv.first;}};typedef typename RBTree<K, pair<const K, V>, MapKeyOFT>::iterator iterator;typedef typename RBTree<K, pair<const K, V>, MapKeyOFT>::iterator const_iterator;V& operator[](const K& key){pair<iterator,bool> ret = _t.Insert(make_pair(key,V()));return ret.first->second;}pair<iterator,bool> insert(const pair<K,V>& kv){return _t.Insert(kv);}iterator begin(){return _t.begin();}iterator end(){return _t.end();}const_iterator begin() const{return _t.begin();}const_iterator end() const{return _t.end();}private:RBTree<K, pair<const K,V>, MapKeyOFT> _t;};
五、完结撒❀
如果以上内容对你有帮助不妨点赞支持一下,以后还会分享更多编程知识,我们一起进步。
最后我想讲的是,据说点赞的都能找到漂亮女朋友❤
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。