【AI实战】大模型 LLM 部署推理框架的 vLLM 应用
szZack 2024-07-14 13:31:03 阅读 76
【AI实战】大模型 LLM 部署推理框架的 vLLM 应用
vLLM介绍环境配置环境要求安装 vllm
算力要求算力查询方法算力问题
Quickstart离线批量推理API Server兼容 OpenAI Server
Serving分布式推理和服务使用 SkyPilot 运行服务
模型vLLM支持的模型添加自己的模型
参考
vLLM介绍
vLLM is a fast and easy-to-use library for LLM inference and serving.
vLLM 速度很快:
State-of-the-art serving throughputEfficient management of attention key and value memory with PagedAttentionContinuous batching of incoming requestsOptimized CUDA kernels
vLLM灵活且易于使用:
Seamless integration with popular HuggingFace modelsHigh-throughput serving with various decoding algorithms, including parallel sampling, beam search, and moreTensor parallelism support for distributed inferenceStreaming outputsOpenAI-compatible API server
vLLM 无缝支持多数 Huggingface 模型,包括:
BLOOM (bigscience/bloom, bigscience/bloomz, etc.)GPT-2 (gpt2, gpt2-xl, etc.)GPT BigCode (bigcode/starcoder, bigcode/gpt_bigcode-santacoder, etc.)GPT-J (EleutherAI/gpt-j-6b, nomic-ai/gpt4all-j, etc.)GPT-NeoX (EleutherAI/gpt-neox-20b, databricks/dolly-v2-12b, stabilityai/stablelm-tuned-alpha-7b, etc.)LLaMA (lmsys/vicuna-13b-v1.3, young-geng/koala, openlm-research/open_llama_13b, etc.)MPT (mosaicml/mpt-7b, mosaicml/mpt-30b, etc.)OPT (facebook/opt-66b, facebook/opt-iml-max-30b, etc.)
环境配置
环境要求
OS: Linux
Python: 3.8 or higher
CUDA: 11.0 – 11.8
GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, etc.)
安装 vllm
pip安装
pip install vllm
源码安装
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . # This may take 5-10 minutes.
算力要求
算力查询方法
打开bing查询地址:https://cn.bing.com/查询方式选择 国际版输入查询内容:
t4 GPUs compute capability
我的 GPU 是 T4,修改 t4 为你的即可查询结果如下:
算力问题
vllm 对GPU 的 compute capability 要求必须大于等于 7.0,否则会报错,错误信息如下:
<code>RuntimeError: GPUs with compute capability less than 7.0 are not supported.
Quickstart
离线批量推理
示例代码:
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="facebook/opt-125m")code>
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
API Server
以 FastAPI server
为例子, 服务使用 AsyncLLMEngine
类来支持异步请求。
开启服务:
python -m vllm.entrypoints.api_server
默认接口:http://localhost:8000
默认模型:OPT-125M model
测试:
curl http://localhost:8000/generate \
-d '{
"prompt": "San Francisco is a",
"use_beam_search": true,
"n": 4,
"temperature": 0
}'
兼容 OpenAI Server
开启服务:
python -m vllm.entrypoints.openai.api_server --model facebook/opt-125m
可选参数:--host
,--port
查询服务:
curl http://localhost:8000/v1/models
测试:
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "facebook/opt-125m",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
Serving
分布式推理和服务
安装依赖库:
pip install ray
多GPU推理
4块GPU推理:
from vllm import LLM
llm = LLM("facebook/opt-13b", tensor_parallel_size=4)
output = llm.generate("San Franciso is a")
使用 tensor_parallel_size 指定 GPU 数量
多GPU服务
python -m vllm.entrypoints.api_server \
--model facebook/opt-13b \
--tensor-parallel-size 4
扩展到多节点
运行vllm之前开启Ray runtime
:
# On head node
ray start --head
# On worker nodes
ray start --address=<ray-head-address>
使用 SkyPilot 运行服务
安装 SkyPilot :
pip install skypilot
sky check
serving.yaml:
resources:
accelerators: A100
envs:
MODEL_NAME: decapoda-research/llama-13b-hf
TOKENIZER: hf-internal-testing/llama-tokenizer
setup: |
conda create -n vllm python=3.9 -y
conda activate vllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install .
pip install gradio
run: |
conda activate vllm
echo 'Starting vllm api server...'
python -u -m vllm.entrypoints.api_server \
--model $MODEL_NAME \
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
--tokenizer $TOKENIZER 2>&1 | tee api_server.log &
echo 'Waiting for vllm api server to start...'
while ! `cat api_server.log | grep -q 'Uvicorn running on'`; do sleep 1; done
echo 'Starting gradio server...'
python vllm/examples/gradio_webserver.py
开启服务:
sky launch serving.yaml
其他可选参数:
sky launch -c vllm-serve-new -s serve.yaml --gpus A100:8 --env MODEL_NAME=decapoda-research/llama-65b-hf
测试:
浏览器打开:https://<gradio-hash>.gradio.live
模型
vLLM支持的模型
https://vllm.readthedocs.io/en/latest/models/supported_models.html#supported-models
添加自己的模型
本文档提供了将HuggingFace Transformers模型集成到vLLM中的高级指南。
https://vllm.readthedocs.io/en/latest/models/adding_model.html
参考
1.https://vllm.readthedocs.io/en/latest/
2.https://github.com/vllm-project/vllm
3.https://vllm.ai/
4.https://github.com/vllm-project/vllm/discussions
5.https://github.com/skypilot-org/skypilot/blob/master/llm/vllm
上一篇: 毕业设计:基于原型学习网络的手写字识别系统 人工智能 CNN
下一篇: 【附教程】2024,人工智能+声音,看这里就够了~16款AI音乐/音频/音效,声音克隆等ai软件与工具大合集~
本文标签
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。