Ai绘画工具SD插件-EasyPhoto 您的智能 AI 照片生成器
程序员晓晓 2024-06-15 11:01:31 阅读 74
前言
在人工智能盛行的当下,各类大模型如雨后春笋般争先恐后地破土而出,AI绘画作为其中极其重要的一员也不停地向我们展示出它的强大能力。本文是笔者在做证件照时发现的一款stable-diffusion webui的插件,极其好用,向大家推荐一下。从本篇开始,笔者会陆续推出stable-diffusion和Midjourney相关的内容梳理了,后续会推出一系列的stable-diffusion webui的插件教程和讲解,敬请期待。
简介
EasyPhoto是一款Webui UI插件,用于生成AI肖像画,该代码可用于训练与您相关的数字分身。建议使用 5 到 20 张肖像图片进行训练,最好是半身照片且不要佩戴眼镜(少量可以接受)。训练完成后,我们可以在推理部分生成图像。我们支持使用预设模板图片与上传自己的图片进行推理。
这些是我们的生成结果:
我们的ui界面如下:
训练部分:
预测部分: [5]
新功能
•创建代码!现在支持 Windows 和 Linux。[🔥 2023.09.02]
TODO List
•支持中文界面。•支持模板背景部分变化。•支持高分辨率。•支持多人模板。
快速启动
1. 环境检查
我们已验证EasyPhoto可在以下环境中执行:
Windows 10 的详细信息:
•操作系统: Windows10•python: python 3.10•pytorch: torch2.0.1•tensorflow-cpu: 2.13.0•CUDA: 11.7•CUDNN: 8+•GPU: Nvidia-3060 12G
Linux 的详细信息:
•操作系统 Ubuntu 20.04, CentOS•python: python3.10 & python3.11•pytorch: torch2.0.1•tensorflow-cpu: 2.13.0•CUDA: 11.7•CUDNN: 8+•GPU: Nvidia-A10 24G & Nvidia-V100 16G & Nvidia-A100 40G
我们需要大约 60GB 的可用磁盘空间(用于保存权重和数据集),请检查!
2. 相关资料库和权重下载
a. Controlnet
我们需要使用 Controlnet 进行推理。相关软件源是Mikubill/sd-webui-controlnet[12]。在使用 EasyPhoto 之前,您需要安装这个软件源。
此外,我们至少需要三个 Controlnets 用于推理。因此,您需要设置 Multi ControlNet: Max models amount (requires restart)。 [13]
b. 其他依赖关系。
我们与现有的 stable-diffusion-webui 环境相互兼容,启动 stable-diffusion-webui 时会安装相关软件源。
我们所需的权重会在第一次开始训练时自动下载。
3. 插件安装
现在我们支持从 git 安装 EasyPhoto。
我们的仓库网址是 https://github.com/aigc-apps/sd-webui-EasyPhoto。
如无法下载请看文末获取本地插件安装包
算法详细信息
1.架构概述
在人工智能肖像领域,我们希望模型生成的图像逼真且与用户相似,而传统方法会引入不真实的光照(如人脸融合或roop)。为了解决这种不真实的问题,我们引入了稳定扩散模型的图像到图像功能。生成完美的个人肖像需要考虑所需的生成场景和用户的数字二重身。我们使用一个预先准备好的模板作为所需的生成场景,并使用一个在线训练的人脸 LoRA 模型作为用户的数字二重身,这是一种流行的稳定扩散微调模型。我们使用少量用户图像来训练用户的稳定数字二重身,并在推理过程中根据人脸 LoRA 模型和预期生成场景生成个人肖像图像。
训练细节
首先,我们对输入的用户图像进行人脸检测,确定人脸位置后,按照一定比例截取输入图像。然后,我们使用显著性检测模型和皮肤美化模型获得干净的人脸训练图像,该图像基本上只包含人脸。然后,我们为每张图像贴上一个固定标签。这里不需要使用标签器,而且效果很好。最后,我们对稳定扩散模型进行微调,得到用户的数字二重身。
在训练过程中,我们会利用模板图像进行实时验证,在训练结束后,我们会计算验证图像与用户图像之间的人脸 ID 差距,从而实现 Lora 融合,确保我们的 Lora 是用户的完美数字二重身。
此外,我们将选择验证中与用户最相似的图像作为 face_id 图像,用于推理。
3.推理细节
a.第一次扩散:
首先,我们将对接收到的模板图像进行人脸检测,以确定为实现稳定扩散而需要涂抹的遮罩。然后,我们将使用模板图像与最佳用户图像进行人脸融合。人脸融合完成后,我们将使用上述遮罩对融合后的人脸图像进行内绘(fusion_image)。此外,我们还将通过仿射变换(replace_image)把训练中获得的最佳 face_id 图像贴到模板图像上。然后,我们将对其应用 Controlnets,在融合图像中使用带有颜色的 canny 提取特征,在替换图像中使用 openpose 提取特征,以确保图像的相似性和稳定性。然后,我们将使用稳定扩散(Stable Diffusion)结合用户的数字分割进行生成。
b.第二次扩散:
在得到第一次扩散的结果后,我们将把该结果与最佳用户图像进行人脸融合,然后再次使用稳定扩散与用户的数字二重身进行生成。第二次生成将使用更高的分辨率。
写在最后
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
若有侵权,请联系删除
上一篇: 【小沐学Python】Python实现TTS文本转语音(speech、pyttsx3、百度AI)
下一篇: AIGC:ChatGPT(一个里程碑式的对话聊天机器人)的简介(意义/功能/核心技术等)、使用方法(七类任务)、案例应用(提问基础性/事实性/逻辑性/创造性/开放性的问题以及编程相关)之详细攻略
本文标签
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。