torch.nn.RNN()相关的参数设置
郭庆汝 2024-08-21 15:01:02 阅读 96
torch.nn.RNN()相关的参数设置
写一个单层、单向的RNN模型训练实例:写一个单层、双向的RNN模型训练实例:
<code>class torch.nn.RNN(input_size, hidden_size, num_layers=1, nonlinearity='tanh', bias=True, batch_first=False, dropout=0, bidirectional=False, proj_size=0)code>
<code>import torch
import torch.nn as nn
# 定义 RNN 模型
class RNNModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(RNNModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
# 初始化隐藏状态
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
# 前向传播
out, _ = self.rnn(x, h0)
# 取最后一个时间步的输出
out = self.fc(out[:, -1, :])
return out
# 超参数设置
input_size = 10 # 输入特征维度
hidden_size = 20 # 隐藏层神经元数量
num_layers = 2 # RNN 层数
num_classes = 5 # 输出类别数
sequence_length = 15 # 序列长度
batch_size = 3 # 批次大小
# 实例化模型
model = RNNModel(input_size, hidden_size, num_layers, num_classes)
# 打印模型结构
print(model)
# 创建输入数据 (batch_size, sequence_length, input_size)
inputs = torch.randn(batch_size, sequence_length, input_size)
# 前向传播
outputs = model(inputs)
# 打印输出
print(outputs)
假设你有一段语音信号,每段语音信号被切分为 15 个时间步,每个时间步包含 10 个特征(例如 MFCC 特征)。你希望使用一个两层的 RNN 模型来处理这些数据,并且最终的输出是 5 个类别中的一个。
input_size = 10 # 每个时间步的特征向量长度
sequence_length = 15 # 每个输入序列的时间步数量
batch_size = 3 # 每个训练批次中的样本数量
# 创建输入数据 (batch_size, sequence_length, input_size)
inputs = torch.randn(batch_size, sequence_length, input_size)
以上代码创建了一个形状为 (3, 15, 10) 的输入张量,表示 3 个样本,每个样本包含 15 个时间步,每个时间步的特征向量长度为 10。这就定义了 input_size 的具体含义,即每个时间步输入特征的维度。
写一个单层、单向的RNN模型训练实例:
<code>import torch
import torch.nn as nn
import numpy as np
# 1. 数据准备
# 假设我们的输入序列是一个简单的正弦波序列
time_steps = np.linspace(0, np.pi, 100)
data = np.sin(time_steps)
# 我们将使用前90个时间步作为训练数据,后10个时间步用于预测
train_data = data[:90]
test_data = data[90:]
# 转换为 PyTorch 张量
train_data = torch.FloatTensor(train_data).view(-1)
test_data = torch.FloatTensor(test_data).view(-1)
# 创建输入序列和目标序列
def create_inout_sequences(input_data, tw):
inout_seq = []
L = len(input_data)
for i in range(L - tw):
train_seq = input_data[i:i + tw]
train_label = input_data[i + tw:i + tw + 1]
inout_seq.append((train_seq, train_label))
return inout_seq
# 序列长度
seq_length = 10
train_inout_seq = create_inout_sequences(train_data, seq_length)
# 2. 定义 RNN 模型
class RNNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNNModel, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, hidden):
out, hidden = self.rnn(x, hidden)
out = self.fc(out[:, -1, :])
return out, hidden
def init_hidden(self, batch_size):
return torch.zeros(1, batch_size, self.hidden_size)
# 超参数设置
input_size = 1
hidden_size = 50
output_size = 1
learning_rate = 0.01
# 实例化模型
model = RNNModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 3. 训练模型
epochs = 200
for epoch in range(epochs):
for seq, labels in train_inout_seq:
optimizer.zero_grad()
seq = seq.view(1, -1, input_size)
labels = labels.view(1, -1, output_size)
hidden = model.init_hidden(1)
y_pred, hidden = model(seq, hidden)
loss = criterion(y_pred, labels)
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print(f'Epoch { epoch + 1}/{ epochs}, Loss: { loss.item()}')
# 4. 预测
model.eval()
test_inputs = train_data[-seq_length:].tolist()
model.hidden = model.init_hidden(1)
for i in range(len(test_data)):
seq = torch.FloatTensor(test_inputs[-seq_length:])
seq = seq.view(1, -1, input_size)
with torch.no_grad():
model.hidden = model.init_hidden(1)
y_pred, model.hidden = model(seq, model.hidden)
test_inputs.append(y_pred.item())
# 将结果转换为 numpy 数组
predicted = np.array(test_inputs[seq_length:])
# 5. 绘图
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 5))
plt.plot(time_steps, data, label='True Data')code>
plt.plot(time_steps[90:], predicted, label='Predicted Data', linestyle='--')code>
plt.legend()
plt.show()
写一个单层、双向的RNN模型训练实例:
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# 1. 数据准备
# 假设我们的输入序列是一个简单的正弦波序列
time_steps = np.linspace(0, np.pi, 100)
data = np.sin(time_steps)
# 我们将使用前90个时间步作为训练数据,后10个时间步用于预测
train_data = data[:90]
test_data = data[90:]
# 转换为 PyTorch 张量
train_data = torch.FloatTensor(train_data).view(-1)
test_data = torch.FloatTensor(test_data).view(-1)
# 创建输入序列和目标序列
def create_inout_sequences(input_data, tw):
inout_seq = []
L = len(input_data)
for i in range(L-tw):
train_seq = input_data[i:i+tw]
train_label = input_data[i+tw:i+tw+1]
inout_seq.append((train_seq, train_label))
return inout_seq
# 序列长度
seq_length = 10
train_inout_seq = create_inout_sequences(train_data, seq_length)
# 2. 定义双向 RNN 模型
class BiRNNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(BiRNNModel, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size * 2, output_size) # *2 because of bidirectional
def forward(self, x, hidden):
out, hidden = self.rnn(x, hidden)
out = self.fc(out[:, -1, :]) # We take the output from the last time step
return out, hidden
def init_hidden(self, batch_size):
# Because it's bidirectional, we need to initialize two hidden states
return torch.zeros(2, batch_size, self.hidden_size)
# 超参数设置
input_size = 1
hidden_size = 50
output_size = 1
learning_rate = 0.01
# 实例化模型
model = BiRNNModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 3. 训练模型
epochs = 100
for epoch in range(epochs):
for seq, labels in train_inout_seq:
optimizer.zero_grad()
seq = seq.view(1, -1, input_size)
labels = labels.view(1, -1, output_size)
hidden = model.init_hidden(1)
y_pred, hidden = model(seq, hidden)
loss = criterion(y_pred, labels)
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print(f'Epoch { epoch+1}/{ epochs}, Loss: { loss.item()}')
# 4. 预测
model.eval()
test_inputs = train_data[-seq_length:].tolist()
model.hidden = model.init_hidden(1)
for i in range(len(test_data)):
seq = torch.FloatTensor(test_inputs[-seq_length:])
seq = seq.view(1, -1, input_size)
with torch.no_grad():
model.hidden = model.init_hidden(1)
y_pred, model.hidden = model(seq, model.hidden)
test_inputs.append(y_pred.item())
# 将结果转换为 numpy 数组
predicted = np.array(test_inputs[seq_length:])
# 5. 绘图
plt.figure(figsize=(10, 5))
plt.plot(time_steps, data, label='True Data')code>
plt.plot(time_steps[90:], predicted, label='Predicted Data', linestyle='--')code>
plt.legend()
plt.show()
上一篇: 国内有哪些好用的AI工具?这五款AI神器让你工作效率翻倍!
下一篇: AI:222-保姆级YOLOv8改进 | 基于DWRSeg扩张式残差机制的小目标检测优化(附修改后的C2f与Bottleneck模块)
本文标签
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。