yoloV5更换BiFPN结合小目标检测层

Summer Reappears、、、 2024-07-04 12:01:05 阅读 58

本文章纯属记录学习使用,我也不太明白是否为小目标检测层,不对的地方还希望一块交流

 yolov5初始模型在特征融合时只对P3、P4、P5、三个特征层进行了融合,添加小目标检测层的目的是把P2(也就是yaml文件中第二个conv层得到的特征图)也加入到特征融合中。

P2位于低特征层,具有较强的位置信息,语义特征信息较弱,常用来进行小目标检测,这篇博客我觉得写的很好     高低特征层

但并不是你觉得你所要检测的是小目标,就需要加入小目标检测层,当添加小目标检测层有时会适得其反,并不会有所改进。看论文对于小目标的定义为:小于32*32像素的目标为小目标。

(yaml能跑通但是有些不合理,等有时间会修改)

添加BiFPN

第一步: 在common.py 文件下添加下列代码

<code># BiFPN

# 两个特征图add操作

class BiFPN_Add2(nn.Module):

def __init__(self, c1, c2):

super(BiFPN_Add2, self).__init__()

# 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter

# 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter

# 从而在参数优化的时候可以自动一起优化

self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)

self.epsilon = 0.0001

self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)

self.silu = nn.SiLU()

def forward(self, x):

w = self.w

weight = w / (torch.sum(w, dim=0) + self.epsilon)

return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1]))

# 三个特征图add操作

class BiFPN_Add3(nn.Module):

def __init__(self, c1, c2):

super(BiFPN_Add3, self).__init__()

self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)

self.epsilon = 0.0001

self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)

self.silu = nn.SiLU()

def forward(self, x):

w = self.w

weight = w / (torch.sum(w, dim=0) + self.epsilon)

# Fast normalized fusion

return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))

第二步: 修改 yolo.py 

<code> elif m in [BiFPN_Add2, BiFPN_Add3]:

c2 = max([ch[x] for x in f])

 

第三步: 修改 train.py

看下边

  该部分代码还请去看迪导博客,他提供很多改进方法,值得学习,强烈推荐!

Yolov5如何更换BiFPN?

6.2版本的train.py代码有些变化,需要进入smart_optomizer这个函数中加入train.py这部分代码

6.2版本会出现报错,后续会解决

2023.3.6 最近在忙并没进行解决,报错的原因大概就是执行顺序的问题

解决思路:把smart_optimizer复制到train.py里,然后加上面红框的代码就可以(如果还报错请留言我再解决)

2023.3.13 解决报错

只需要把smart_optimizer这个函数放在train.py就行,位置随便

<code> # BiFPN_Concat

elif isinstance(v, BiFPN_Add2) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):

g[1].append(v.w)

elif isinstance(v, BiFPN_Add3) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):

g[1].append(v.w)

 导入BiFPN_Add2,BiFPN_Add3

from models.common import BiFPN_Add3, BiFPN_Add2

记得要把这个删除,不然会报错

 运行成功

 

接下来便是修改后的yaml文件

<code># Parameters

nc: 1 # number of classes

depth_multiple: 0.33 # model depth multiple

width_multiple: 0.50 # layer channel multiple

anchors: 3 # AutoAnchor evolves 3 anchors per P output layer

# YOLOv5 v6.0 backbone

# Adding connection in architecture between backbone and multi-stage head

backbone:

# [from, number, module, args]

[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2

[-1, 1, Conv, [128, 3, 2]], # 1-P2/4

[-1, 3, C3, [128]],

[-1, 1, Conv, [256, 3, 2]], # 3-P3/8

[-1, 6, C3, [256]],

[-1, 1, Conv, [512, 3, 2]], # 5-P4/16

[-1, 9, C3, [512]],

[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32

[-1, 3, C3, [1024]],

[-1, 1, SPPF, [1024, 5]], # 9

]

# YOLOv5 v6.0 head

head:

[[-1, 1, Conv, [512, 1, 1]],

[-1, 1, nn.Upsample, [None, 2, 'nearest']],

[[-1, 6], 1, BiFPN_Add2, [256,256]], # cat backbone P4

[-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]],

[-1, 1, nn.Upsample, [None, 2, 'nearest']],

[[-1, 4], 1, BiFPN_Add2, [128,128]], # cat backbone P3

[-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [128, 1, 1]],

[-1, 1, nn.Upsample, [None, 2, 'nearest']],

[[-1, 2], 1, BiFPN_Add2, [64,64]], # cat backbone P2

[-1, 3, C3, [128, False]], # 21 (P2/4-tiny)

[-1, 1, Conv, [256, 3, 2]],

[[-1, 17, 4], 1, BiFPN_Add3, [128,128]],

[-1, 3, C3, [256, False]], # 24 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],

[[-1, 13, 6], 1, BiFPN_Add3, [256,256]],

[-1, 3, C3, [512, False]], # 27 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],

[[-1, 10], 1, BiFPN_Add2, [256,256]],

[-1, 3, C3, [1024, False]], # 30 (P5/32-large)

[[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)

]

经过修改后的四检测头结合BiFPN(若有错误还请大佬指点一下)

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters (P2, P3, P4, P5)都输出,宽深与large版本相同,相当于比large版本能检测更小物体

nc: 1 # number of classes

depth_multiple: 0.33 # model depth multiple

width_multiple: 0.50 # layer channel multiple

anchors: 4 # AutoAnchor evolves 3 anchors per P output layer

# YOLOv5 v6.0 backbone

backbone:

# [from, number, module, args]

[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2

[-1, 1, Conv, [128, 3, 2]], # 1-P2/4

[-1, 3, C3, [128]],

[-1, 1, Conv, [256, 3, 2]], # 3-P3/8

[-1, 6, C3, [256]],

[-1, 1, Conv, [512, 3, 2]], # 5-P4/16

[-1, 9, C3, [512]],

[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32

[-1, 3, C3, [1024]],

[-1, 1, SPPF, [1024, 5]], # 9

]

# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs

head:

[[-1, 1, Conv, [512, 1, 1]],

[-1, 1, nn.Upsample, [None, 2, 'nearest']],

[[-1, 6], 1, BiFPN_Add2, [256,256]], # cat backbone P4

[-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]],

[-1, 1, nn.Upsample, [None, 2, 'nearest']],

[[-1, 4], 1, BiFPN_Add2, [128,128]], # cat backbone P3

[-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [128, 1, 1]],

[-1, 1, nn.Upsample, [None, 2, 'nearest']],

[[-1, 2], 1, BiFPN_Add2, [64,64]], # cat backbone P2

[-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)

[-1, 1, Conv, [128, 3, 2]],

[-1, 1, Conv, [256, 1, 1]],

[[-1, 17, 4], 1, BiFPN_Add3, [128,128]], # cat head P3

[-1, 3, C3, [256, False]], # 25 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],

[-1, 1, Conv, [512, 1, 1]],

[[-1, 13, 6], 1, BiFPN_Add3, [256,256]], # cat head P4

[-1, 3, C3, [512, False]], # 29 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],

[[-1, 10], 1, BiFPN_Add2, [256,256]], # cat head P5

[-1, 3, C3, [1024, False]], # 32 (P5/32-large)

[[21, 25, 29, 32], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)

]

题外话

这个博客中的BiFPN代码有两个版本,个人感觉第二个版本更合理些,因为不会出现我用1*1conv更换通道使得BiFPN_Add3结合成功,可以尝试下



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。