如何使用labelme中的AI多边形(AI-polygon)标注

%编程小白% 2024-06-30 13:01:02 阅读 63

文章目录

1.创建labelme虚拟环境2.下载AI标注模型3.修改配置文件4.愉快地使用labelme的AI标注工具

1.创建labelme虚拟环境

(1)创建基础环境并激活

conda create -n labelme python=3.8

conda activate labelme

(2)安装labelme

pip install labelme -i https://pypi.tuna.tsinghua.edu.cn/simple/ numpy

(3)使用labelme启动

在这里插入图片描述

如果是第一次装labelme,打开图像路径,右键图像后选择Create AI-Polygon,软件会自动下载并安装AI标注模型,我的下载速度太慢,导致第一次下载失败,最后选择了手动安装。

在这里插入图片描述

2.下载AI标注模型

可以选择在官网上下载AI自动标注模型下载地址

在这里插入图片描述

如果连不到外网,可以通过迅雷网盘或者百度网盘提取模型

迅雷网盘链接:https://pan.xunlei.com/s/VNkyiDkG9ORZRr7Mhx4ru3I8A1#

提取码:2dbf

百度网盘链接:https://pan.baidu.com/s/11xrWH4p_auHl-cKYjZ899Q?pwd=lg1j

提取码:lg1j

在anaconda虚拟环境中找到E:\programFiles\anaconda3\envs\labelme\Lib\site-packages\labelme此路径,将下载好的文件放入此文件夹下。

在这里插入图片描述

3.修改配置文件

(1)找到"E:\programFiles\anaconda3\envs\labelme\Lib\site-packages\labelme\ai\__init__.py"文件,并修改里面的模型路径。

# flake8: noqa

import logging

import sys

from qtpy import QT_VERSION

__appname__ = "labelme"

# Semantic Versioning 2.0.0: https://semver.org/

# 1. MAJOR version when you make incompatible API changes;

# 2. MINOR version when you add functionality in a backwards-compatible manner;

# 3. PATCH version when you make backwards-compatible bug fixes.

# e.g., 1.0.0a0, 1.0.0a1, 1.0.0b0, 1.0.0rc0, 1.0.0, 1.0.0.post0

__version__ = "5.4.0a0"

QT4 = QT_VERSION[0] == "4"

QT5 = QT_VERSION[0] == "5"

del QT_VERSION

PY2 = sys.version[0] == "2"

PY3 = sys.version[0] == "3"

del sys

from labelme.label_file import LabelFile

from labelme import testing

from labelme import utils

import collections

from .models.segment_anything import SegmentAnythingModel # NOQA

Model = collections.namedtuple(

"Model", ["name", "encoder_weight", "decoder_weight"]

)

Weight = collections.namedtuple("Weight", ["url", "md5"])

# MODELS = [

# Model(

# name="Segment-Anything (speed)",

# encoder_weight=Weight(

# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_b_01ec64.quantized.encoder.onnx", # NOQA

# md5="80fd8d0ab6c6ae8cb7b3bd5f368a752c",

# ),

# decoder_weight=Weight(

# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_b_01ec64.quantized.decoder.onnx", # NOQA

# md5="4253558be238c15fc265a7a876aaec82",

# ),

# ),

# Model(

# name="Segment-Anything (balanced)",

# encoder_weight=Weight(

# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_l_0b3195.quantized.encoder.onnx", # NOQA

# md5="080004dc9992724d360a49399d1ee24b",

# ),

# decoder_weight=Weight(

# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_l_0b3195.quantized.decoder.onnx", # NOQA

# md5="851b7faac91e8e23940ee1294231d5c7",

# ),

# ),

# Model(

# name="Segment-Anything (accuracy)",

# encoder_weight=Weight(

# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_h_4b8939.quantized.encoder.onnx", # NOQA

# md5="958b5710d25b198d765fb6b94798f49e",

# ),

# decoder_weight=Weight(

# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_h_4b8939.quantized.decoder.onnx", # NOQA

# md5="a997a408347aa081b17a3ffff9f42a80",

# ),

# ),

# ]

MODELS = [

Model(

name="Segment-Anything (speed)",

encoder_weight=Weight(

url="E:\programFiles\\anaconda3\envs\labelme\Lib\site-packages\labelme\model_file\sam_vit_b_01ec64.quantized.encoder.onnx", # NOQA

md5="80fd8d0ab6c6ae8cb7b3bd5f368a752c",

),

decoder_weight=Weight(

url="E:\programFiles\\anaconda3\envs\labelme\Lib\site-packages\labelme\model_file\sam_vit_b_01ec64.quantized.decoder.onnx", # NOQA

md5="4253558be238c15fc265a7a876aaec82",

),

),

Model(

name="Segment-Anything (balanced)",

encoder_weight=Weight(

url="E:\\programFiles\\anaconda3\\envs\\labelme\\Lib\\site-packages\\labelme\\model_file\\sam_vit_l_0b3195.quantized.encoder.onnx", # NOQA

md5="080004dc9992724d360a49399d1ee24b",

),

decoder_weight=Weight(

url="E:\\programFiles\\anaconda3\\envs\\labelme\\Lib\\site-packages\\labelme\\model_file\\sam_vit_l_0b3195.quantized.decoder.onnx", # NOQA

md5="851b7faac91e8e23940ee1294231d5c7",

),

),

Model(

name="Segment-Anything (accuracy)",

encoder_weight=Weight(

url="E:\\programFiles\\anaconda3\\envs\\labelme\\Lib\\site-packages\\labelme\\model_file\\sam_vit_h_4b8939.quantized.decoder.onnx", # NOQA

md5="958b5710d25b198d765fb6b94798f49e",

),

decoder_weight=Weight(

url="E:\\programFiles\\anaconda3\\envs\\labelme\\Lib\\site-packages\\labelme\\model_file\\sam_vit_h_4b8939.quantized.encoder.onnx", # NOQA

md5="a997a408347aa081b17a3ffff9f42a80",

),

),

]

(2)找到E:\programFiles\anaconda3\envs\labelme\Lib\site-packages\labelme\widgets\canvas.py文件夹并修改initializeAiModel方法

def initializeAiModel(self, name):

if name not in [model.name for model in labelme.ai.MODELS]:

raise ValueError("Unsupported ai model: %s" % name)

model = [model for model in labelme.ai.MODELS if model.name == name][0]

if self._ai_model is not None and self._ai_model.name == model.name:

logger.debug("AI model is already initialized: %r" % model.name)

else:

logger.debug("Initializing AI model: %r" % model.name)

self._ai_model = labelme.ai.SegmentAnythingModel(

name=model.name,

# encoder_path=gdown.cached_download(

# url=model.encoder_weight.url,

# md5=model.encoder_weight.md5,

# ),

# decoder_path=gdown.cached_download(

# url=model.decoder_weight.url,

# md5=model.decoder_weight.md5,

# ),

encoder_path=model.encoder_weight.url,

decoder_path=model.decoder_weight.url,

)

self._ai_model.set_image(

image=labelme.utils.img_qt_to_arr(self.pixmap.toImage())

)

4.愉快地使用labelme的AI标注工具

这样再激活虚拟环境,使用labelme命令打开标注工具,右键选择AI标注,双击标注完成。

在这里插入图片描述

参考链接:labelme加载AI模型



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。