如何使用labelme中的AI多边形(AI-polygon)标注
%编程小白% 2024-06-30 13:01:02 阅读 63
文章目录
1.创建labelme虚拟环境2.下载AI标注模型3.修改配置文件4.愉快地使用labelme的AI标注工具
1.创建labelme虚拟环境
(1)创建基础环境并激活
conda create -n labelme python=3.8
conda activate labelme
(2)安装labelme
pip install labelme -i https://pypi.tuna.tsinghua.edu.cn/simple/ numpy
(3)使用labelme
启动
如果是第一次装labelme,打开图像路径,右键图像后选择Create AI-Polygon,软件会自动下载并安装AI标注模型,我的下载速度太慢,导致第一次下载失败,最后选择了手动安装。
2.下载AI标注模型
可以选择在官网上下载AI自动标注模型下载地址
如果连不到外网,可以通过迅雷网盘或者百度网盘提取模型
迅雷网盘链接:https://pan.xunlei.com/s/VNkyiDkG9ORZRr7Mhx4ru3I8A1#
提取码:2dbf
百度网盘链接:https://pan.baidu.com/s/11xrWH4p_auHl-cKYjZ899Q?pwd=lg1j
提取码:lg1j
在anaconda虚拟环境中找到E:\programFiles\anaconda3\envs\labelme\Lib\site-packages\labelme
此路径,将下载好的文件放入此文件夹下。
3.修改配置文件
(1)找到"E:\programFiles\anaconda3\envs\labelme\Lib\site-packages\labelme\ai\__init__.py"
文件,并修改里面的模型路径。
# flake8: noqa
import logging
import sys
from qtpy import QT_VERSION
__appname__ = "labelme"
# Semantic Versioning 2.0.0: https://semver.org/
# 1. MAJOR version when you make incompatible API changes;
# 2. MINOR version when you add functionality in a backwards-compatible manner;
# 3. PATCH version when you make backwards-compatible bug fixes.
# e.g., 1.0.0a0, 1.0.0a1, 1.0.0b0, 1.0.0rc0, 1.0.0, 1.0.0.post0
__version__ = "5.4.0a0"
QT4 = QT_VERSION[0] == "4"
QT5 = QT_VERSION[0] == "5"
del QT_VERSION
PY2 = sys.version[0] == "2"
PY3 = sys.version[0] == "3"
del sys
from labelme.label_file import LabelFile
from labelme import testing
from labelme import utils
import collections
from .models.segment_anything import SegmentAnythingModel # NOQA
Model = collections.namedtuple(
"Model", ["name", "encoder_weight", "decoder_weight"]
)
Weight = collections.namedtuple("Weight", ["url", "md5"])
# MODELS = [
# Model(
# name="Segment-Anything (speed)",
# encoder_weight=Weight(
# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_b_01ec64.quantized.encoder.onnx", # NOQA
# md5="80fd8d0ab6c6ae8cb7b3bd5f368a752c",
# ),
# decoder_weight=Weight(
# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_b_01ec64.quantized.decoder.onnx", # NOQA
# md5="4253558be238c15fc265a7a876aaec82",
# ),
# ),
# Model(
# name="Segment-Anything (balanced)",
# encoder_weight=Weight(
# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_l_0b3195.quantized.encoder.onnx", # NOQA
# md5="080004dc9992724d360a49399d1ee24b",
# ),
# decoder_weight=Weight(
# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_l_0b3195.quantized.decoder.onnx", # NOQA
# md5="851b7faac91e8e23940ee1294231d5c7",
# ),
# ),
# Model(
# name="Segment-Anything (accuracy)",
# encoder_weight=Weight(
# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_h_4b8939.quantized.encoder.onnx", # NOQA
# md5="958b5710d25b198d765fb6b94798f49e",
# ),
# decoder_weight=Weight(
# url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_h_4b8939.quantized.decoder.onnx", # NOQA
# md5="a997a408347aa081b17a3ffff9f42a80",
# ),
# ),
# ]
MODELS = [
Model(
name="Segment-Anything (speed)",
encoder_weight=Weight(
url="E:\programFiles\\anaconda3\envs\labelme\Lib\site-packages\labelme\model_file\sam_vit_b_01ec64.quantized.encoder.onnx", # NOQA
md5="80fd8d0ab6c6ae8cb7b3bd5f368a752c",
),
decoder_weight=Weight(
url="E:\programFiles\\anaconda3\envs\labelme\Lib\site-packages\labelme\model_file\sam_vit_b_01ec64.quantized.decoder.onnx", # NOQA
md5="4253558be238c15fc265a7a876aaec82",
),
),
Model(
name="Segment-Anything (balanced)",
encoder_weight=Weight(
url="E:\\programFiles\\anaconda3\\envs\\labelme\\Lib\\site-packages\\labelme\\model_file\\sam_vit_l_0b3195.quantized.encoder.onnx", # NOQA
md5="080004dc9992724d360a49399d1ee24b",
),
decoder_weight=Weight(
url="E:\\programFiles\\anaconda3\\envs\\labelme\\Lib\\site-packages\\labelme\\model_file\\sam_vit_l_0b3195.quantized.decoder.onnx", # NOQA
md5="851b7faac91e8e23940ee1294231d5c7",
),
),
Model(
name="Segment-Anything (accuracy)",
encoder_weight=Weight(
url="E:\\programFiles\\anaconda3\\envs\\labelme\\Lib\\site-packages\\labelme\\model_file\\sam_vit_h_4b8939.quantized.decoder.onnx", # NOQA
md5="958b5710d25b198d765fb6b94798f49e",
),
decoder_weight=Weight(
url="E:\\programFiles\\anaconda3\\envs\\labelme\\Lib\\site-packages\\labelme\\model_file\\sam_vit_h_4b8939.quantized.encoder.onnx", # NOQA
md5="a997a408347aa081b17a3ffff9f42a80",
),
),
]
(2)找到E:\programFiles\anaconda3\envs\labelme\Lib\site-packages\labelme\widgets\canvas.py
文件夹并修改initializeAiModel方法
def initializeAiModel(self, name):
if name not in [model.name for model in labelme.ai.MODELS]:
raise ValueError("Unsupported ai model: %s" % name)
model = [model for model in labelme.ai.MODELS if model.name == name][0]
if self._ai_model is not None and self._ai_model.name == model.name:
logger.debug("AI model is already initialized: %r" % model.name)
else:
logger.debug("Initializing AI model: %r" % model.name)
self._ai_model = labelme.ai.SegmentAnythingModel(
name=model.name,
# encoder_path=gdown.cached_download(
# url=model.encoder_weight.url,
# md5=model.encoder_weight.md5,
# ),
# decoder_path=gdown.cached_download(
# url=model.decoder_weight.url,
# md5=model.decoder_weight.md5,
# ),
encoder_path=model.encoder_weight.url,
decoder_path=model.decoder_weight.url,
)
self._ai_model.set_image(
image=labelme.utils.img_qt_to_arr(self.pixmap.toImage())
)
4.愉快地使用labelme的AI标注工具
这样再激活虚拟环境,使用labelme
命令打开标注工具,右键选择AI标注,双击标注完成。
参考链接:labelme加载AI模型
上一篇: yolov5模型(.pt)在RK3588(S)上的部署(实时摄像头检测)
本文标签
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。