Java调用AI平台服务的示例
egzosn 2024-09-02 14:01:01 阅读 91
调用不同AI平台的API可以实现自然语言处理、图像识别、语音识别等功能。以下是Java调用一些常见AI平台的示例,包括OpenAI、Google Cloud AI、Microsoft Azure AI和IBM Watson等。
目录
准备工作调用OpenAI API调用Google Cloud AI API调用Microsoft Azure AI API调用IBM Watson API总结
一、准备工作
在开始之前,需要完成以下准备工作:
创建相应平台的账户。获取API密钥或访问令牌。导入所需的第三方库(如HttpClient和JSON解析库)。
示例中将使用Apache HttpClient库进行HTTP请求,并使用org.json库解析JSON响应。可以通过Maven引入这些依赖:
<code><dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
<version>4.5.13</version>
</dependency>
<dependency>
<groupId>org.json</groupId>
<artifactId>json</artifactId>
<version>20210307</version>
</dependency>
1.2.3.4.5.6.7.8.9.10.
二、调用OpenAI API
生成文本示例
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;
import org.json.JSONObject;
public class OpenAIExample {
private static final String API_KEY = "";
private static final String ENDPOINT = "https://api.openai.com/v1/completions";
public static void main(String[] args) {
try (CloseableHttpClient httpClient = HttpClients.createDefault()) {
HttpPost request = new HttpPost(ENDPOINT);
request.addHeader("Content-Type", "application/json");
request.addHeader("Authorization", "Bearer " + API_KEY);
JSONObject json = new JSONObject();
json.put("model", "text-davinci-003");
json.put("prompt", "Write a poem about the sea");
json.put("max_tokens", 100);
StringEntity entity = new StringEntity(json.toString());
request.setEntity(entity);
try (CloseableHttpResponse response = httpClient.execute(request)) {
String responseString = EntityUtils.toString(response.getEntity());
JSONObject responseJson = new JSONObject(responseString);
System.out.println(responseJson.toString(2));
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.
三、调用Google Cloud AI API
语音识别示例
import com.google.auth.oauth2.GoogleCredentials;
import com.google.cloud.speech.v1.*;
import com.google.protobuf.ByteString;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
public class GoogleCloudAIExample {
public static void main(String[] args) throws Exception {
// 设置Google Cloud凭据文件
GoogleCredentials credentials = GoogleCredentials.fromStream(Files.newInputStream(Paths.get("path/to/credentials.json")));
SpeechSettings settings = SpeechSettings.newBuilder().setCredentialsProvider(() -> credentials).build();
try (SpeechClient speechClient = SpeechClient.create(settings)) {
Path path = Paths.get("path/to/audio.raw");
byte[] data = Files.readAllBytes(path);
ByteString audioBytes = ByteString.copyFrom(data);
RecognitionConfig config = RecognitionConfig.newBuilder()
.setEncoding(RecognitionConfig.AudioEncoding.LINEAR16)
.setSampleRateHertz(16000)
.setLanguageCode("en-US")
.build();
RecognitionAudio audio = RecognitionAudio.newBuilder().setContent(audio(ByteString).build());
RecognizeResponse response = speechClient.recognize(config, audio);
for (SpeechRecognitionResult result : response.getResultsList()) {
SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
System.out.printf("Transcript: %s%n", alternative.getTranscript());
}
}
}
}
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.
四、调用Microsoft Azure AI API
文本翻译示例
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;
import org.json.JSONArray;
import org.json.JSONObject;
public class AzureAIExample {
private static final String API_KEY = "your_azure_api_key";
private static final String ENDPOINT = "https://api.cognitive.microsofttranslator.com/translate?api-version=3.0&to=es";
public static void main(String[] args) {
try (CloseableHttpClient httpClient = HttpClients.createDefault()) {
HttpPost request = new HttpPost(ENDPOINT);
request.setHeader("Content-Type", "application/json");
request.setHeader("Ocp-Apim-Subscription-Key", API_KEY);
request.setHeader("Ocp-Apim-Subscription-Region", "your_region");
JSONArray jsonArray = new JSONArray();
JSONObject json = new JSONObject();
json.put("Text", "Hello, how are you?");
jsonArray.put(json);
StringEntity entity = new StringEntity(jsonArray.toString());
request.setEntity(entity);
try (CloseableHttpResponse response = httpClient.execute(request)) {
String responseString = EntityUtils.toString(response.getEntity());
JSONArray responseJsonArray = new JSONArray(responseString);
System.out.println(responseJsonArray.toString(2));
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.
五、调用IBM Watson API
自然语言理解示例
import com.ibm.cloud.sdk.core.security.IamAuthenticator;
import com.ibm.watson.natural_language_understanding.v1.NaturalLanguageUnderstanding;
import com.ibm.watson.natural_language_understanding.v1.model.AnalysisResults;
import com.ibm.watson.natural_language_understanding.v1.model.AnalyzeOptions;
import com.ibm.watson.natural_language_understanding.v1.model.EntitiesOptions;
import com.ibm.watson.natural_language_understanding.v1.model.EntityAnalysis;
public class IBMWatsonExample {
public static void main(String[] args) {
IamAuthenticator authenticator = new IamAuthenticator("your_ibm_watson_api_key");
NaturalLanguageUnderstanding naturalLanguageUnderstanding = new NaturalLanguageUnderstanding("2021-03-25", authenticator);
naturalLanguageUnderstanding.setServiceUrl("your_service_url");
EntitiesOptions entitiesOptions = new EntitiesOptions.Builder()
.sentiment(true)
.limit(1)
.build();
AnalyzeOptions parameters = new AnalyzeOptions.Builder()
.text("IBM is an American multinational technology company headquartered in Armonk, New York, with operations in over 170 countries.")
.entities(entitiesOptions)
.build();
AnalysisResults response = naturalLanguageUnderstanding.analyze(parameters).execute().getResult();
for (EntityAnalysis entity : response.getEntities()) {
System.out.printf("Entity: %s, Sentiment: %s%n", entity.getText(), entity.getSentiment().getScore());
}
}
}
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.
调用AI平台的步骤大致如下:
获取API Key和Endpoint:注册相应AI平台账户并获取API访问密钥和服务地址。配置HTTP请求:使用HttpClient配置HTTP请求头、请求方法(如GET、POST)和请求体。解析响应:接收并解析API返回的响应数据,可以使用JSON库解析响应以获取所需信息。
六、更多AI平台调用示例
除了上述的几个主流平台,还有其他一些热门的AI服务,如Amazon Web Services (AWS) 的人工智能服务和百度的AI服务。以下是这些平台的一些使用示例。
调用Amazon AWS AI服务
使用Amazon Comprehend进行情感分析
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.comprehend.AmazonComprehend;
import com.amazonaws.services.comprehend.AmazonComprehendClientBuilder;
import com.amazonaws.services.comprehend.model.DetectSentimentRequest;
import com.amazonaws.services.comprehend.model.DetectSentimentResult;
public class AWSExample {
public static void main(String[] args) {
AWSCredentials awsCredentials = new BasicAWSCredentials("your_aws_access_key", "your_aws_secret_key");
AmazonComprehend comprehendClient = AmazonComprehendClientBuilder.standard()
.withCredentials(new AWSStaticCredentialsProvider(awsCredentials))
.withRegion(Regions.US_EAST_1).build();
String text = "I am so happy to use AWS services!";
DetectSentimentRequest detectSentimentRequest = new DetectSentimentRequest().withText(text).withLanguageCode("en");
DetectSentimentResult detectSentimentResult = comprehendClient.detectSentiment(detectSentimentRequest);
System.out.println("Sentiment: " + detectSentimentResult.getSentiment());
}
}
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.
使用Amazon Rekognition进行图像识别
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.rekognition.AmazonRekognition;
import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.services.rekognition.model.DetectLabelsRequest;
import com.amazonaws.services.rekognition.model.DetectLabelsResult;
import com.amazonaws.services.rekognition.model.Image;
import com.amazonaws.services.rekognition.model.Label;
import com.amazonaws.util.IOUtils;
import java.io.FileInputStream;
import java.nio.ByteBuffer;
public class AWSImageExample {
public static void main(String[] args) throws Exception {
AWSCredentials awsCredentials = new BasicAWSCredentials("your_aws_access_key", "your_aws_secret_key");
AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.standard()
.withCredentials(new AWSStaticCredentialsProvider(awsCredentials))
.withRegion(Regions.US_EAST_1).build();
try (FileInputStream inputStream = new FileInputStream("path/to/your/image.jpg")) {
ByteBuffer imageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));
DetectLabelsRequest request = new DetectLabelsRequest()
.withImage(new Image().withBytes(imageBytes))
.withMaxLabels(10)
.withMinConfidence(75F);
DetectLabelsResult result = rekognitionClient.detectLabels(request);
for (Label label : result.getLabels()) {
System.out.println("Label: " + label.getName() + ", Confidence: " + label.getConfidence().toString());
}
}
}
}
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.
调用百度AI服务
使用百度AI进行语音合成
import com.baidu.aip.speech.AipSpeech;
import org.json.JSONObject;
import java.io.FileOutputStream;
public class BaiduAIExample {
public static final String APP_ID = "your_app_id";
public static final String API_KEY = "your_api_key";
public static final String SECRET_KEY = "your_secret_key";
public static void main(String[] args) {
AipSpeech client = new AipSpeech(APP_ID, API_KEY, SECRET_KEY);
// 语音合成
JSONObject res = client.synthesis("欢迎使用百度AI服务", "zh", 1, null);
if (res.has("error_code")) {
System.err.println("Error: " + res.getString("error_msg"));
} else {
try (FileOutputStream out = new FileOutputStream("output.mp3")) {
out.write(res.getAsByteArray());
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.
七、总结
本文详细介绍了如何在Java中调用多家主流AI平台的API,通过示例展示了从文本生成、语音识别到图像识别等不同AI技术的应用场景。使用这些AI平台,可以大幅提升应用的智能化水平,提供更优质的用户体验。
总结下来,调用各大AI平台API的通用步骤包括:
注册和配置:在相应的平台注册账号,获取API Key或Access Token,并根据需要完成初始配置。引入依赖:通过构建工具(如Maven或Gradle)引入必要的依赖库,如HTTP客户端、JSON解析库等。编写请求代码:设置请求参数和头信息,通过HTTP方法(如GET、POST)发送请求。处理响应:接收并解析API返回的数据,根据具体需求做进一步处理。
通过这些步骤,开发者可以在Java应用中充分利用各个平台的AI能力,从而实现更丰富、智能的功能。在实际开发中,请自行参考平台文档以获取最新的接口信息和最佳实践。此外,考虑到实际项目中会涉及到性能、安全和成本等问题,在正式上线前建议进行充分的测试和优化。
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。