人工智能 | 基于ChatGPT开发人工智能服务平台

霍格沃兹测试开发学社测试人社区 2024-10-06 17:31:01 阅读 100

简介

ChatGPT 在刚问世的时候,其产品形态就是一个问答机器人。而基于ChatGPT的能力还可以对其做一些二次开发和拓展。比如模拟面试功能、或者智能机器人功能。

模拟面试功能包括个性化问题生成、实时反馈、多轮面试模拟、面试报告。

智能机器人功能提供24/7客服支持、自然语言处理、任务自动化、多渠道支持和数据分析与报告。

智能平台的使用价值

而通过人工智能,可以将以上的流程自动化的实现。可以帮助用户:

提升面试准备效果提高客户服务效率

实现思路

如果要实现一个初步的模拟面试平台,那么会分为以下几个步骤完成:

需求功能设计。技术架构设计技术选型。技术实现。

需求功能设计

模拟面试平台的功能可复杂可简单,当然最基本的功能需求需要具备:

提问,模拟面试官的角色向用户提出下一个问题。接受回复,需要有一个输入,能够接收用户的输入的回复信息。

所以基于以上需求,我们的界面设计应该是:

技术架构设计

技术选型

因为功能比较简单,所以技术架构可选择任意的前后端技术。示例使用 <code>Flask + Template + HTML/CSS 技术

技术实现

环境准备

前端界面实现

<!DOCTYPE html>

<head>

<title>霍格沃兹测试开发学社模拟面试系统</title>

<link rel="stylesheet" href="{ { url_for('static', filename='main.css') }}"/>code>

</head>

<body>

<img src="{ { 'https://ceshiren.com/uploads/default/original/1X/809c63f904a37bc0c6f029bbaf4903c27f03ea8a.png' }}"code>

class="icon"/>code>

<h3>霍格沃兹测试开发学社模拟面试系统</h3>

{% if result %}

<div class="result">{ { result }}</div>code>

{% endif %}

<form action="/" method="post">code>

<input type="text" name="msg" placeholder="请先说你好,打个招呼" required/>code>

<input type="submit" value="开始面试"/>code>

</form>

</body>

后端服务实现

获取 token 相关的基本配置信息。

import os

from pathlib import Path

import openai

import yaml

from flask import Flask, redirect, render_template, request, url_for

# 通过 yaml 配置文件获取 openai 配置

conf_path = Path(__file__).parent.joinpath('conf/dev.yaml')

with open(conf_path) as f:

conf: dict = yaml.safe_load(f)

# 通过环境变量设置 openai 的 token 和代理地址

os.environ["OPENAI_API_KEY"] = conf.get("OPENAI_API_KEY")

os.environ["OPENAI_BASE_URL"] = conf.get("OPENAI_BASE_URL")

通过变量message记录和大模型的历史交互信息。

# 发送的历史消息

messages = []

从前端获取到用户的输入信息,并将从大模型获取到的响应展示到界面上。- 如果是第一次,则使用预制的prompt。- 不是第一次,则接受响应信息。

# 创建 flask 实例

app = Flask(__name__)

# 定义路由

@app.route("/", methods=("GET", "POST"))

def index():

if request.method == "POST":

# 获取前端的用户输入信息

user_msg = request.form["msg"]

# 定义要发送给 openai 接口的信息

if messages:

# 有上下文历史

messages.append({

'role': 'user',

# 把用户输入的信息直接发给 openai

'content': user_msg

})

else:

# 第一次初始化

messages.append({

'role': 'user',

# 把最初的提示词发送给 openai

'content': generate_prompt(user_msg)

})

# 打印创建好的信息

print(f"messages: { messages}")

# 调用 openai 自带的方法,向 openai 服务器发出请求,并获取响应

response = openai.chat.completions.create(

model='gpt-3.5-turbo',code>

messages=messages,

temperature=0

)

# 从响应内容中提取 openai 回复的内容

answer = response.choices[0].message.content

# 打印回复内容

print(f"answer: { answer}")

# 刷新首页,返回答案信息

# result 参数会拼接在 index 视图函数对应路由的后方

# http://xx/?result=xxx

return redirect(url_for("index", result=answer))

# 获取拼接在 url 中的 result 参数的值,如果没有携带 result,则 result 值为空

result = request.args.get("result")

print(f"result = { result}")

# 第一次进入首页,result 为空,输入框上方不显示内容

return render_template("index.html", result=result)

def generate_prompt(msg):

# 定义提示词

prompt_msg = f"""你是一名软件测试工程师,你了解软件测试的技术与经验,你需要面试应聘者。

我是应聘者,你会问我这个职位的面试问题。

我希望你只以面试官的身份回答,一次只问一个问题,问我问题并等待我的回答。

当我说结束面试的时候给出我的面试表现的评价和我的改进方向。

我的输入是 { msg}

"""

# 返回提示词

return prompt_msg

启动服务

if __name__ == '__main__':

app.run(debug=True)

总结

了解一个人工智能平台的基本设计思路。通过前后端开发的技术,实现一个基本的模拟面试平台。

在这里插入图片描述

推荐学习

【霍格沃兹测试开发】7天软件测试快速入门带你从零基础/转行/小白/就业/测试用例设计实战

【霍格沃兹测试开发】最新版!Web 自动化测试从入门到精通/ 电子商务产品实战/Selenium (上集)

【霍格沃兹测试开发】最新版!Web 自动化测试从入门到精通/ 电子商务产品实战/Selenium (下集)

【霍格沃兹测试开发】明星讲师精心打造最新Python 教程软件测试开发从业者必学(上集)

【霍格沃兹测试开发】明星讲师精心打造最新Python 教程软件测试开发从业者必学(下集)

【霍格沃兹测试开发】精品课合集/ 自动化测试/ 性能测试/ 精准测试/ 测试左移/ 测试右移/ 人工智能测试

【霍格沃兹测试开发】腾讯/ 百度/ 阿里/ 字节测试专家技术沙龙分享合集/ 精准化测试/ 流量回放/Diff

【霍格沃兹测试开发】Pytest 用例结构/ 编写规范 / 免费分享

【霍格沃兹测试开发】JMeter 实时性能监控平台/ 数据分析展示系统Grafana/Docker 安装

【霍格沃兹测试开发】接口自动化测试的场景有哪些?为什么要做接口自动化测试?如何一键生成测试报告?

【霍格沃兹测试开发】面试技巧指导/ 测试开发能力评级/1V1 模拟面试实战/ 冲刺年薪百万!

【霍格沃兹测试开发】腾讯软件测试能力评级标准/ 要评级表格的联系我

【霍格沃兹测试开发】Pytest 与Allure2 一键生成测试报告/ 测试用例断言/ 数据驱动/ 参数化

【霍格沃兹测试开发】App 功能测试实战快速入门/adb 常用命令/adb 压力测试

【霍格沃兹测试开发】阿里/ 百度/ 腾讯/ 滴滴/ 字节/ 一线大厂面试真题讲解,卷完拿高薪Offer !

【霍格沃兹测试开发】App自动化测试零基础快速入门/Appium/自动化用例录制/参数配置

【霍格沃兹测试开发】如何用Postman 做接口测试,从入门到实战/ 接口抓包(最新最全教程)



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。