【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)
CSDN 2024-08-22 14:31:45 阅读 76
目录
一、引言
二、零样本图像分类(zero-shot-image-classification)
2.1 概述
2.2 技术原理
2.3 应用场景
2.4 pipeline参数
2.4.1 pipeline对象实例化参数
2.4.2 pipeline对象使用参数
2.4 pipeline实战
2.5 模型排名
三、总结
一、引言
pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型
今天介绍CV计算机视觉的第七篇,零样本图像分类(zero-shot-image-classification),在huggingface库内有500个零样本图像分类模型。
二、零样本图像分类(zero-shot-image-classification)
2.1 概述
零样本图像分类是指模型对以前未见过的图片类别进行分类的任务,它要求模型能够在没有看到特定类别样本的情况下,对这些类别进行分类。这通常通过学习类别之间的语义表示(如从文本描述中学习)来实现,并将图像特征与这些语义表示相匹配。
2.2 技术原理
比较典型的模型是openai发布的clip-vit-base-patch16,曾被应用于Stable Diffusion文生图模型中,用于文本与图片间的信息关联。关于文生图/图生图可参考我之前的文章
首先,采用对比学习方法,基于vit(Vision Transformer)对文本与图片的语义关系进行学习其次,创建用于分类任务的数据集最后,对于未曾见过的图片进行分类。
2.3 应用场景
多领域识别:在需要识别新出现或罕见类别的场景中,如生物学的物种识别、新出现的商品分类、或者在没有直接训练样本的艺术作品分类,ZSL能通过预先定义的语义描述来识别新类别。智能检索:用户可以使用自然语言描述来检索特定的图像内容,即使该图像类别未在训练集中出现,例如在大规模图像库中的视觉搜索应用。多语种支持的图像标签:在多语言环境下,ZSL技术可以利用文本描述的语义来为图像自动标注,无需针对每种语言的标签进行单独训练。交互式系统:在AI助手或聊天机器人中,用户可以描述一个未见过的物体,系统通过零样本学习能力理解并识别这类物体,提供相关信息。监控与安全:在监控系统中,可以识别新类型的安全威胁或异常行为,即使这些行为或对象在训练期间未被预先学习。
2.4 pipeline参数
2.4.1 pipeline对象实例化参数
model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。image_processor ( BaseImageProcessor ) — 管道将使用的图像处理器来为模型编码数据。此对象继承自 BaseImageProcessor。modelcard(<code>str或
ModelCard
,可选)— 属于此管道模型的模型卡。framework(str
,可选)— 要使用的框架,"pt"
适用于 PyTorch 或"tf"
TensorFlow。必须安装指定的框架。
如果未指定框架,则默认为当前安装的框架。如果未指定框架且安装了两个框架,则默认为 的框架
model
,如果未提供模型,则默认为 PyTorch。task(
str
,默认为""
)— 管道的任务标识符。 num_workers(int
, 可选,默认为 8)— 当管道将使用 DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。 batch_size(int
, 可选,默认为 1)— 当管道将使用 DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。 args_parser(ArgumentHandler, 可选) - 引用负责解析提供的管道参数的对象。 device(int
, 可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.device
或str
太 torch_dtype(str
或torch.dtype
, 可选) - 直接发送model_kwargs
(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16
,,torch.bfloat16
...或"auto"
) binary_output(bool
, 可选,默认为False
)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。
2.4.2 pipeline对象使用参数
image(
str
、List[str]
或PIL.Image
)List[PIL.Image]
——管道处理三种类型的图像:
包含指向图像的 http 链接的字符串包含图像本地路径的字符串直接在 PIL 中加载的图像candidates_labels (
List[str]
) — 该图像的候选标签hypothesis_template(str
,可选,默认为)— 与候选标签"This is a photo of {}"
结合使用的句子,通过用候选标签替换占位符来尝试图像分类。然后使用 logits_per_image 估计可能性timeout(可选float
,默认为 None)— 等待从网络获取图像的最长时间(以秒为单位)。如果为 None,则不设置超时,并且调用可能会永远阻塞。
2.4 pipeline实战
分别采用google/siglip-so400m-patch14-384和openai/clip-vit-base-patch16对以下图片进行分类
图片一:
图片二:
采用pipeline代码如下
<code>import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
from transformers import pipeline
classifier = pipeline(model="google/siglip-so400m-patch14-384")code>
output=classifier(
"./sd-xl.png",
candidate_labels=["animals", "humans", "landscape"],
)
print(output)
classifier = pipeline(model="openai/clip-vit-base-patch16")code>
output=classifier(
"http://images.cocodataset.org/val2017/000000039769.jpg",
candidate_labels=["black and white", "photorealist", "painting"],
)
print(output)
执行后,自动下载模型文件并进行识别:
2.5 模型排名
在huggingface上,我们将零样本图片分类(zero-shot-image-classification)模型按下载量从高到低排序:
三、总结
本文对transformers之pipeline的零样本图片分类(zero-shot-image-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的零样本图片分类(zero-shot-image-classification)模型。
期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:
《Transformers-Pipeline概述》
【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用
《Transformers-Pipeline 第一章:音频(Audio)篇》
【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)
【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)
【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)
《Transformers-Pipeline 第二章:计算机视觉(CV)篇》
【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)
【人工智能】Transformers之Pipeline(六):图像分类(image-classification)
【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)
【人工智能】Transformers之Pipeline(八):图生图(image-to-image)
【人工智能】Transformers之Pipeline(九):物体检测(object-detection)
【人工智能】Transformers之Pipeline(十):视频分类(video-classification)
【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)
【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)
《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》
【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
【人工智能】Transformers之Pipeline(十四):问答(question-answering)
【人工智能】Transformers之Pipeline(十五):总结(summarization)
【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)
【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)
【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)
【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)
【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)
【人工智能】Transformers之Pipeline(二十一):翻译(translation)
【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)
《Transformers-Pipeline 第四章:多模态(Multimodal)篇》
【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)
【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)
【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)
【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)
【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)
【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)
上一篇: 【微调大模型】如何利用开源大模型,微调出一个自己大模型_开源大模型微调
下一篇: 人工智能在病理组学中的发展历程概述|24年6月·顶刊速递·06-04
本文标签
【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。