【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

CSDN 2024-08-16 11:01:02 阅读 88

目录

一、引言 

二、视频分类(video-classification)

2.1 概述

2.2 技术原理

2.3 应用场景

2.4 pipeline参数

2.4.1 pipeline对象实例化参数

2.4.2 pipeline对象使用参数 

2.4 pipeline实战

2.5 模型排名

三、总结


一、引言 

 pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍CV计算机视觉的第六篇:视频分类(video-classification),在huggingface库内有1100个视频分类模型。

二、视频分类(video-classification)

2.1 概述

视频分类是为整个视频分配标签或类别的任务。每个视频预计只有一个类别。视频分类模型将视频作为输入,并返回关于该视频属于哪个类别的预测。

2.2 技术原理

视频分类(video-classification)最典型的模型莫过于微软的xclip系列,xclip为clip模型的拓展,采用(视频-文本)进行对比学习训练。微软提供了包括microsoft/xclip-base-patch32、microsoft/xclip-base-patch16等不同块分辨率训练的模型。比如microsoft/xclip-base-patch32,块分辨率大小为32,使用每段视频 8 帧进行训练,分辨率为 224x224。详细论文可参考《Expanding Language-Image Pretrained Models for General Video Recognition》

2.3 应用场景

内容审查与过滤:自动识别视频内容,过滤非法、暴力、成人内容,确保平台合规。视频检索:用户可以通过分类标签快速找到感兴趣的视频,提高检索效率。教育与培训:将教育视频按科目、难度等分类,便于学习者系统学习。娱乐与直播:分类管理直播内容,如游戏、音乐、生活等,便于观众选择观看。体育赛事分析:通过分类快速定位到特定比赛类型或运动员表现分析。

2.4 pipeline参数

2.4.1 pipeline对象实例化参数

model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。image_processor ( BaseImageProcessor ) — 管道将使用的图像处理器来为模型编码数据。此对象继承自 BaseImageProcessor。modelcard(<code>str或ModelCard可选) — 属于此管道模型的模型卡。frameworkstr可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。taskstr,默认为"")— 管道的任务标识符。num_workersint可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。batch_sizeint可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。deviceint可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.devicestrtorch_dtypestrtorch.dtype可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto"binary_outputbool可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。

2.4.2 pipeline对象使用参数 

videostrList[str])——管道处理三种类型的视频:

包含指向视频的 http 链接的字符串包含视频本地路径的字符串

管道可以接受单个视频或一批视频,然后必须将其作为字符串传递。一批视频必须全部采用相同的格式:全部为 http 链接或全部为本地路径。

top_kint可选,默认为 5)— 管道将返回的顶部标签数。如果提供的数字高于模型配置中可用的标签数,则将默认为标签数。 num_framesint可选,默认为 self.model.config.num_frames)— 从视频中采样的用于运行分类的帧数。如果未提供,则默认为模型配置中指定的帧数。 frame_sampling_rate (  int可选,默认为 1) — 用于从视频中选择帧的采样率。如果未提供,则默认为 1,即将使用每一帧。

2.4 pipeline实战

使用hf_hub_download下载或使用本地视频:

亲测pipeline不能用,于是使用Auto模型方法,与使用Autotokenizer处理文本不同,对于图片的处理使用AutoImageProcessor(处理视频的本质就是先将视频拆帧成图片,再对图片进行处理)

<code>import os

os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"

os.environ["CUDA_VISIBLE_DEVICES"] = "2"

import av

import torch

import numpy as np

from transformers import AutoImageProcessor, VideoMAEForVideoClassification,TimesformerForVideoClassification

from huggingface_hub import hf_hub_download

np.random.seed(0)

def read_video_pyav(container, indices):

'''

通过PyAV库解码视频中的特定帧。

Decode the video with PyAV decoder.

Args:

container (`av.container.input.InputContainer`): PyAV container.

indices (`List[int]`): List of frame indices to decode.

Returns:

result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).

'''

frames = []

container.seek(0)

start_index = indices[0]

end_index = indices[-1]

for i, frame in enumerate(container.decode(video=0)):

if i > end_index:

break

if i >= start_index and i in indices:

frames.append(frame)

return np.stack([x.to_ndarray(format="rgb24") for x in frames])code>

def sample_frame_indices(clip_len, frame_sample_rate, seg_len):

'''

从视频中按照特定规则采样帧的索引.

Sample a given number of frame indices from the video.

Args:

clip_len (`int`): Total number of frames to sample.

frame_sample_rate (`int`): Sample every n-th frame.

seg_len (`int`): Maximum allowed index of sample's last frame.

Returns:

indices (`List[int]`): List of sampled frame indices

'''

converted_len = int(clip_len * frame_sample_rate)

end_idx = np.random.randint(converted_len, seg_len)

start_idx = end_idx - converted_len

indices = np.linspace(start_idx, end_idx, num=clip_len)

indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)

return indices

# video clip consists of 300 frames (10 seconds at 30 FPS)

file_path = "./transformers_basketball.avi"

"""

file_path = hf_hub_download(

repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"code>

)

"""

container = av.open(file_path)

# sample 16 frames

indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)

video = read_video_pyav(container, indices)

image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")

#model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")

model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400")

inputs = image_processor(list(video), return_tensors="pt")code>

with torch.no_grad():

outputs = model(**inputs)

logits = outputs.logits

# model predicts one of the 400 Kinetics-400 classes

predicted_label = logits.argmax(-1).item()

print(model.config.id2label[predicted_label])

执行后,自动下载模型文件,构建索引,拆帧,视频分类预测:​ 

2.5 模型排名

在huggingface上,我们将视频分类(video-classification)模型按下载量从高到低排序,排在前10的模型主要由微软的xclip、南京大学的videomae、facebook的timesformer、google的vivit等四类模型构成。

三、总结

本文对transformers之pipeline的视频分类(video-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用代码极简的代码部署计算机视觉中的视频分类(video-classification)模型,应用于视频判别场景。

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《Transformers-Pipeline概述》

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

《Transformers-Pipeline 第一章:音频(Audio)篇》

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)

【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)

《Transformers-Pipeline 第二章:计算机视觉(CV)篇》

【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

【人工智能】Transformers之Pipeline(六):图像分类(image-classification)

【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)

【人工智能】Transformers之Pipeline(八):图生图(image-to-image)

【人工智能】Transformers之Pipeline(九):物体检测(object-detection)

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)

【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)

《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》

【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)

【人工智能】Transformers之Pipeline(十四):问答(question-answering)

【人工智能】Transformers之Pipeline(十五):总结(summarization)

【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)

【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)

【人工智能】Transformers之Pipeline(二十一):翻译(translation)

【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)

《Transformers-Pipeline 第四章:多模态(Multimodal)篇》

【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)

【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)

【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)

【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。