超级详细Spring AI运用Ollama大模型
爱吃java的羊儿 2024-06-18 12:01:06 阅读 99
大模型工具Ollama
官网:https://ollama.com/
Ollama是一个用于部署和运行各种开源大模型的工具;
它能够帮助用户快速在本地运行各种大模型,极大地简化了大模型在本地运行的过程。用户通过执行几条命令就能在本地运行开源大模型,如Lama 2等;
综上,Ollama是一个大模型部署运行工具,在该工具里面可以部署运行各种大模型,方便开发者在本地搭建一套大模型运行环境;
下载:https://ollama.com/download
下载Ollama
说明:Ollama的运行会受到所使用模型大小的影响;
1、例如,运行一个7B(70亿参数)的模型至少需要8GB的可用内存(RAM),而运行一个13B(130亿参数)的模型需要16GB的内存,33B(330亿参数)的型需要32GB的内存;
2、需要考虑有足够的磁盘空间,大模型的文件大小可能比较大,建议至少为Ollama和其模型预留50GB的磁盘空间3、性能较高的CPU可以提供更好的运算速度和效率,多核处理器能够更好地处理并行任务,选择具有足够核心数的CPU:
4、显卡(GPU):Ollama支持纯CPU运行,但如果电脑配备了NVIDIA GPU,可以利用GPU进行加速,提高模型的运行速度和性能;
命令行使用ollama 打开终端,输入 ollama -h,查看到所有的命令
service ollama start启动allama
输入ollama -v
查看当前版本,能输出版本则安装成功
运行模型单行对话
拉取并运行llama2模型
ollama run llama2
直接输入该命令会检查目录下是否有该模型,没有会自动下载,下载好后自动运行该模型
其他模型见library (ollama.com)
# 查看 Ollama 版本ollama -v# 查看已安装的模型ollama list# 删除指定模型ollama rm [modelname]# 模型存储路径# C:\Users\<username>\.ollama\models
ollama run qwen:0.5b
默认Ollama api会监听11434端口,可以使用命令进行查看netstat -ano |findstr 114341
//加依赖<dependency><groupld>org.springframework,ai</groupld><artifactld>spring-ai-ollama-spring-boot-starter</artifactld></dependency>//写代码注入OllamaChatClient@Resourceprivate OllamaChatClient ollamaChatClient,//调用call方法ollamaChatClient.call(msg);
完整pom文件
<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>3.3.0</version> <relativePath/> <!-- lookup parent from repository --> </parent> <groupId>com.zzq</groupId> <artifactId>spring-ai-ollama</artifactId> <version>0.0.1-SNAPSHOT</version> <name>spring-ai-ollama</name> <description>spring-ai-ollama</description> <properties> <java.version>17</java.version> <!-- 快照版本--> <spring-ai.version>1.0.0-SNAPSHOT</spring-ai.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-ollama-spring-boot-starter</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-devtools</artifactId> <scope>runtime</scope> <optional>true</optional> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <optional>true</optional> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> </dependencies> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-bom</artifactId> <version>${spring-ai.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> <configuration> <excludes> <exclude> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> </exclude> </excludes> </configuration> </plugin> </plugins> </build> <!-- 快照版本--> <repositories> <repository> <id>spring-snapshot</id> <name>Spring Snapshots</name> <url>https://repo.spring.io/snapshot</url> <releases> <enabled>false</enabled> </releases> </repository> </repositories></project>
application文件内容
spring: application: name:spring-ai-05-ollama ai: ollama: base-url: http://localhost:11434 chat: options: model: qwen:0.5b
controller
package com.zzq.controller;import jakarta.annotation.Resource;import org.springframework.ai.ollama.OllamaChatModel;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.RequestParam;import org.springframework.web.bind.annotation.RestController;@RestControllerpublic class OllamaController { @Resource private OllamaChatModel ollamaChatModel; @RequestMapping(value = "/ai/ollama") public Object ollama(@RequestParam(value = "msg")String msg){ String called=ollamaChatModel.call(msg); System.out.println(called); return called; }}
package com.zzq.controller;import jakarta.annotation.Resource;import org.springframework.ai.chat.model.ChatResponse;import org.springframework.ai.chat.prompt.Prompt;import org.springframework.ai.ollama.OllamaChatModel;import org.springframework.ai.ollama.api.OllamaOptions;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.RequestParam;import org.springframework.web.bind.annotation.RestController;@RestControllerpublic class OllamaController { @Resource private OllamaChatModel ollamaChatModel; @RequestMapping(value = "/ai/ollama") public Object ollama(@RequestParam(value = "msg")String msg){ String called=ollamaChatModel.call(msg); System.out.println(called); return called; } @RequestMapping(value = "/ai/ollama2") public Object ollama2(@RequestParam(value = "msg")String msg){ ChatResponse chatResponse=ollamaChatModel.call(new Prompt(msg, OllamaOptions.create() .withModel("qwen:0.5b")//使用哪个大模型 .withTemperature(0.4F)));//温度,温度值越高,准确率下降,温度值越低,准确率上升 System.out.println(chatResponse.getResult().getOutput().getContent()); return chatResponse.getResult().getOutput().getContent(); }}
上一篇: 人工智能(AI)与地理信息技术(GIS)的融合:开启智能地理信息时代
下一篇: AI国漫女神这样画!傻瓜式的云端SD(stable diffusion)部署教程 - 白嫖4090、无需代码、一键启动
本文标签
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。