YOLOv7-tiny网络结构图及yaml文件 详细备注

创不了浩 2024-06-14 16:31:05 阅读 99

YOLOv7-tiny

整体网络结构图yolov7-tiny.yaml组件模块MXCBLSPPCSP结构图yaml构建代码 MCB结构图yaml文件表示common.py代码 参考

整体网络结构图

在这里插入图片描述

yolov7-tiny.yaml

# parametersnc: 80 # number of classesdepth_multiple: 1.0 # model depth multiplewidth_multiple: 1.0 # layer channel multiple# anchorsanchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32# yolov7-tiny backbonebackbone: # [from, number, module, args] ch_out, k=1, s=1, p=None, g=1, act=True [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2 [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4 [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]], #MCB [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [[-1, -2, -3, -4], 1, Concat, [1]], [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7 [-1, 1, MP, []], # 8-P3/8 [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [[-1, -2, -3, -4], 1, Concat, [1]], [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14 [-1, 1, MP, []], # 15-P4/16 [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [[-1, -2, -3, -4], 1, Concat, [1]], [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21 [-1, 1, MP, []], # 22-P5/32 [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [[-1, -2, -3, -4], 1, Concat, [1]], [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28 ]# yolov7-tiny headhead: #SPPCSP [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, SP, [5]], [-2, 1, SP, [9]], [-3, 1, SP, [13]], [[-1, -2, -3, -4], 1, Concat, [1]], [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [[-1, -7], 1, Concat, [1]], [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37 [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4 [[-1, -2], 1, Concat, [1]], [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [[-1, -2, -3, -4], 1, Concat, [1]], [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47 [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3 [[-1, -2], 1, Concat, [1]], [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [[-1, -2, -3, -4], 1, Concat, [1]], [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57 [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]], [[-1, 47], 1, Concat, [1]], [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [[-1, -2, -3, -4], 1, Concat, [1]], [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65 [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]], [[-1, 37], 1, Concat, [1]], [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [[-1, -2, -3, -4], 1, Concat, [1]], [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73 [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [[74,75,76], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5) ]

组件模块

MX

池化层,默认表示两倍下采样,

class MP(nn.Module): def __init__(self, k=2): super(MP, self).__init__() self.m = nn.MaxPool2d(kernel_size=k, stride=k) def forward(self, x): return self.m(x)

[-1, 1, MP, []], # 8-P3/8

CBL

就是表示Conv+BN+LeakyReLU

[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]]

class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super(Conv, self).__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) def forward(self, x): return self.act(self.bn(self.conv(x))) def fuseforward(self, x): return self.act(self.conv(x))

SPPCSP

结构图

在这里插入图片描述

yaml

yaml文件中如下表示,直接看最后一层输出通道数,尺寸不会变化,SP模块默认设置卷积Pading为卷积核的一半大小

#SPPCSP [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], #20*20*256 [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], #20*20*256 [-1, 1, SP, [5]], [-2, 1, SP, [9]], [-3, 1, SP, [13]], [[-1, -2, -3, -4], 1, Concat, [1]], #20*20*512 [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], #20*20*256 [[-1, -7], 1, Concat, [1]], #20*20*512 [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],#20 #20*20*256

构建代码

yaml文件中的SP表示如下

# i+2p-kclass SP(nn.Module): def __init__(self, k=3, s=1): super(SP, self).__init__() self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2) def forward(self, x): return self.m(x)

MCB

结构图

在这里插入图片描述

yaml文件表示

直接看最后一层输出的通道数看Concat后变化,

[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], #40*40*64 [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], [[-1, -2, -3, -4], 1, Concat, [1]], [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 30 #40*40*128

common.py代码

通过Conv函数构建即可

参考

yolov7-tiny网络结构图

https://blog.csdn.net/weixin_51346544/article/details/129322706



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。