NCCL拓扑管理 - Search模块
慢河 2024-09-03 10:01:03 阅读 95
NCCL Search模块从节点连接和节点路径构造完毕的系统拓扑中搜索出各类逻辑拓扑(如环拓扑,树拓扑等)的通道(每个拓扑可能有多个通道,通道间可以并行运行集合通信算法)和节点(GPU节点和NET节点)。后续的connect模块将这些搜索出来的通道和节点根据拓扑的类型构建起来。
数据结构
ncclTopoGraph是search模块的主要结构体,它包含搜索的输入超参,比如id,pattern等,也包括了搜索结果的输出,比如通道数nChannels,每个通道的节点(非网络相连的节点信息保存在intra数组里,网络相连的节点保存在inter数组里)。
其中pattern包含以下5种。
<code>#define NCCL_TOPO_PATTERN_BALANCED_TREE 1 // Spread NIC traffic between two GPUs (Tree parent + one child on first GPU, second child on second GPU)
#define NCCL_TOPO_PATTERN_SPLIT_TREE 2 // Spread NIC traffic between two GPUs (Tree parent on first GPU, tree children on the second GPU)
#define NCCL_TOPO_PATTERN_TREE 3 // All NIC traffic going to/from the same GPU
#define NCCL_TOPO_PATTERN_RING 4 // Ring
#define NCCL_TOPO_PATTERN_NVLS 5 // NVLS+SHARP and NVLS+Tree
ncclTopoGraph的成员介绍参见注释。
struct ncclTopoGraph {
// Input / output of the search
int id; // ring : 0, tree : 1, collnet : 2
int pattern; // topo pattern
int crossNic; // if inbound Net and outbound Net use different NICs or not
int collNet; // is CollNet or not
int minChannels; // minChannel for search
int maxChannels; // maxChannel for search
// Output of the search
int nChannels; // number of channels searched, can run in parallel
float bwIntra; // intra-connect bandwidth
float bwInter; // inter-connect bandwidth
float latencyInter; // inter-connect latency
int typeIntra; // intra-connect type
int typeInter; // inter-connect type
int sameChannels; // 1 if all channels are the same type and bandwidth, 0 otherwise
int nHops; // Number of hops in the graph
int intra[MAXCHANNELS*NCCL_TOPO_MAX_NODES]; // intra[channel_id][node_id]
int64_t inter[MAXCHANNELS*2]; // inter[channel_id][2],one for inbound and one for outbound
};
接口
ncclTopoSearchInit
ncclTopoSearchInit接口负责搜索前完成系统拓扑maxBw和totalBw的初始化,这两个数据也作为搜索的参考值。
// Setup system->maxBw and system->totalBw
// maxBw: maximum bandwidth between GPU and GPU or GPU and NET if cross NIC is required
// totalBw: maximum bandwidth a GPU node can have(NVLink or PCI)
ncclResult_t ncclTopoSearchInit(struct ncclTopoSystem* system) {
system->maxBw = 0.0;
system->totalBw = 0.0;
int inter = system->nodes[NET].count;
// If we have only one GPU, we can use local bandwidth
if (inter == 0 && system->nodes[GPU].count == 1) {
system->maxBw = LOC_BW;
system->totalBw = LOC_BW;
return ncclSuccess;
}
for (int g=0; g<system->nodes[GPU].count; g++) {
struct ncclTopoNode* gpu = system->nodes[GPU].nodes+g;
// Find the maximum bandwidth between GPU and GPU or GPU and NET
system->maxBw = std::max(system->maxBw, getMaxBw(system, gpu, inter ? NET : GPU));
system->totalBw = std::max(system->totalBw, getTotalBw(system, gpu));
}
return ncclSuccess;
}
ncclTopoCompute
ncclTopoCompute接口接收连接和路径构造完毕的ncclTopoSystem,搜索参数填写在ncclTopoGraph结构体中,将根据ncclTopoGraph中的预置信息展开搜索。
搜索速度变化的数值列举在以下数组中,数组下标越小速度越快。针对sm90有独立的速度数组。
float speedArrayIntra[] = { 40.0, 30.0, 20.0, 18.0, 15.0, 12.0, 10.0, 9.0, 7.0, 6.0, 5.0, 4.0, 3.0 };
float speedArrayInter[] = { 48.0, 30.0, 28.0, 24.0, 20.0, 18.0, 15.0, 12.0, 10.0, 9.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.4, 1.2, 0.24, 0.12 };
float sm90SpeedArrayIntra[] = { 60.0, 50.0, 40.0, 30.0, 24.0, 20.0, 15.0, 12.0, 11.0, 6.0, 3.0 };
float sm90SpeedArrayInter[] = { 48.0, 45.0, 42.0, 40.0, 30.0, 24.0, 22.0, 20.0, 17.5, 15.0, 12.0, 6.0, 3.0, 2.4, 1.2, 0.24, 0.12 };
搜索算法使用贪心法和回溯法,整体而言一开始根据ncclTopoSystem中的maxBw和totalBw从速度数组里挑选一个最接近的数值作为搜索的开始,如果以此条件能搜索出结果则尝试再提升速度进行搜索,否则逐渐放松搜索要求进行搜索。可以发现代码中有大量的goto search语句,该语句前即是各类不同的搜索条件调整(搜索不到则降低条件,搜索到则提高条件)。
ncclResult_t ncclTopoCompute(ncclTopoSystem* system, struct ncclTopoGraph* graph) {
int ngpus = system->nodes[GPU].count;
// crossNic require more than 1 NET,
// pattern need to be NCCL_TOPO_PATTERN_RING || NCCL_TOPO_PATTERN_BALANCED_TREE || NCCL_TOPO_PATTERN_SPLIT_TREE,
// could be disabled using ncclParamCrossNic
int crossNic = (system->nodes[NET].count > 1) &&
(graph->pattern == NCCL_TOPO_PATTERN_RING ||
graph->pattern == NCCL_TOPO_PATTERN_BALANCED_TREE ||
graph->pattern == NCCL_TOPO_PATTERN_SPLIT_TREE) ? ncclParamCrossNic() : 0;
graph->crossNic = crossNic == 1 ? 1 : 0;
graph->bwIntra = graph->bwInter = 0;
graph->latencyInter = 0;
// init with fastest intra connection type, will slow it down when searching
graph->typeIntra = ngpus == 1 ? PATH_LOC : PATH_NVL;
// init with fastest inter connection type, will slow it down when searching
graph->typeInter = PATH_PIX;
graph->nChannels = 0;
// Only try Heterogeneous channels in when connected wiht NVLS maybe because NVLS is configable
int trySameChannels = graph->pattern == NCCL_TOPO_PATTERN_NVLS ? 0 : 1;
graph->sameChannels = trySameChannels;
int cpuArch, cpuVendor, cpuModel;
NCCLCHECK(ncclTopoCpuType(system, &cpuArch, &cpuVendor, &cpuModel));
// First try to load a graph from an XML file, search result can be cached in an XML file
const char* str = ncclGetEnv("NCCL_GRAPH_FILE");
if (str) {
INFO(NCCL_ENV, "NCCL_GRAPH_FILE set by environment to %s", str);
struct ncclXml* xml;
NCCLCHECK(xmlAlloc(&xml, NCCL_GRAPH_XML_MAX_NODES));
NCCLCHECK(ncclTopoGetXmlGraphFromFile(str, xml));
int nChannels;
NCCLCHECK(ncclTopoGetGraphFromXml(xml->nodes, system, graph, &nChannels));
INFO(NCCL_GRAPH, "Search %d : %d channels loaded from XML graph", graph->id, nChannels);
free(xml);
if (graph->nChannels > 0) return ncclSuccess;
}
int ccMin;
NCCLCHECK(ncclTopoGetCompCap(system, &ccMin, NULL));
if (graph->pattern == NCCL_TOPO_PATTERN_NVLS && (system->nodes[NVS].count == 0 || ccMin < 90)) return ncclSuccess;
// NVLS search must have ngpus heads at most.
// Think about fully connected case, each GPU has nGPU links and each channel use 1 link of the GPU
if (graph->pattern == NCCL_TOPO_PATTERN_NVLS) graph->maxChannels = system->nodes[GPU].count;
// No intra nodes, use NCCL_TOPO_PATTERN_TREE
if (ngpus == 1) if (graph->pattern != NCCL_TOPO_PATTERN_RING) graph->pattern = NCCL_TOPO_PATTERN_TREE;
// force minChannels == maxChannels to force maximum channels searching to ensure maximum pallalism
if (system->nodes[NET].count == 0 && graph->pattern == NCCL_TOPO_PATTERN_NVLS) {
// Force intra-node NVLS algorithm to pull evenly from all GPUs.
graph->minChannels = graph->maxChannels = system->nodes[GPU].count;
}
// save graph data for traceback algorithm to recovery later
struct ncclTopoGraph tmpGraph;
memcpy(&tmpGraph, graph, sizeof(struct ncclTopoGraph));
// First try crossnic, then decrease bw and finally increase bwIntra.
// Initialize bwIntra, bwInter using speedArray, choose the maximum speed close to system maxBw and totalBw.
// Initialize gobalTimeout, each search will consume time based on different pattern.
int nspeeds = 0;
float* speedArray = NULL;
if (system->nodes[NET].count == 0) {
nspeeds = ccMin >= 90 ? NSPEEDSINTRA_SM90 : NSPEEDSINTRA;
speedArray = ccMin >= 90 ? sm90SpeedArrayIntra : speedArrayIntra;
} else {
nspeeds = ccMin >= 90 ? NSPEEDSINTER_SM90 : NSPEEDSINTER;
speedArray = ccMin >= 90 ? sm90SpeedArrayInter : speedArrayInter;
}
int pass = 1;
int speedIndex = 0;
float maxBw = system->maxBw;
float totalBw = system->totalBw;
if (ngpus > 1 && graph->pattern != NCCL_TOPO_PATTERN_RING) totalBw *= ngpus*1.0/(ngpus-1);
while ((speedArray[speedIndex] > maxBw || speedArray[speedIndex]*graph->minChannels > totalBw) && speedIndex < nspeeds-1) speedIndex++;
tmpGraph.bwIntra = tmpGraph.bwInter = speedArray[speedIndex];
int64_t globalTimeout = NCCL_SEARCH_GLOBAL_TIMEOUT;
search:
int time = tmpGraph.sameChannels ? NCCL_SEARCH_TIMEOUT_SAMECHANNELS :
tmpGraph.pattern == NCCL_TOPO_PATTERN_TREE ? NCCL_SEARCH_TIMEOUT_TREE : NCCL_SEARCH_TIMEOUT;
tmpGraph.nChannels = 0;
globalTimeout -= time;
NCCLCHECK(ncclTopoSearchRec(system, &tmpGraph, graph, &time));
// Optimal solution, stop here
if (time == -1) goto done;
if (graph->nChannels*graph->bwInter >= system->totalBw) goto done;
if (pass == 1) {
// First pass, we don't have a solution yet ; try other options
// Try having different channels (except when going through AMD CPUs)
if (tmpGraph.sameChannels == 1 &&
!(cpuArch == NCCL_TOPO_CPU_ARCH_X86 && cpuVendor == NCCL_TOPO_CPU_VENDOR_AMD && tmpGraph.typeIntra == PATH_SYS)]{
tmpGraph.sameChannels = 0;
goto search;
}
tmpGraph.sameChannels = trySameChannels;
if (time != -1) globalTimeout += time; // No result, traceback and search again
else globalTimeout = NCCL_SEARCH_GLOBAL_TIMEOUT; // has
if (globalTimeout < 0 && graph->nChannels) goto done;
// Try a simpler tree
if (ccMin >= 90 && tmpGraph.pattern == NCCL_TOPO_PATTERN_BALANCED_TREE) {
tmpGraph.pattern = NCCL_TOPO_PATTERN_TREE;
goto search;
}
tmpGraph.pattern = graph->pattern;
int maxTypeIntra = system->nodes[NET].count > 0 ? tmpGraph.typeInter : PATH_SYS;
if (tmpGraph.typeIntra < maxTypeIntra && (graph->nChannels == 0 || tmpGraph.typeIntra < graph->typeIntra)) {
tmpGraph.typeIntra += 1;
goto search;
}
tmpGraph.typeIntra = ngpus == 1 ? PATH_LOC : PATH_NVL;
if (system->nodes[NET].count > 0 && tmpGraph.typeInter < PATH_SYS && (graph->nChannels == 0 || tmpGraph.typeInter < graph->typeInter || tmpGraph.typeInter < PATH_PXN)) {
tmpGraph.typeInter += 1;
goto search;
}
tmpGraph.typeInter = PATH_PIX;
if (crossNic == 2 && tmpGraph.crossNic == 0) {
// Try again with crossNic if permitted
tmpGraph.crossNic = 1;
goto search;
}
tmpGraph.crossNic = crossNic == 1 ? 1 : 0;
// Decrease bw until we find a solution
if ((speedIndex < nspeeds-1) && (graph->nChannels == 0 || (speedArray[speedIndex+1]/graph->bwInter > .49))) {
tmpGraph.bwInter = tmpGraph.bwIntra = speedArray[++speedIndex];
goto search;
}
speedIndex = 0;
while (speedArray[speedIndex] > maxBw && speedIndex < nspeeds-1) speedIndex++;
tmpGraph.bwIntra = tmpGraph.bwInter = speedArray[speedIndex];
}
done:
// We have a solution. Start from that solution and move to pass 2.
if (pass == 1) {
time = -1;
NCCLCHECK(ncclTopoDupChannels(graph, ccMin, ngpus));
memcpy(&tmpGraph, graph, sizeof(tmpGraph));
speedIndex = 0;
while (speedArray[speedIndex] > graph->bwInter && speedIndex < nspeeds-1) speedIndex++;
tmpGraph.bwIntra = tmpGraph.bwInter = speedArray[speedIndex];
tmpGraph.minChannels = graph->nChannels;
pass = 2;
}
if (pass == 2) {
// See if we can increase bw
if (time != 0 && speedIndex > 0) {
if (graph->pattern == NCCL_TOPO_PATTERN_RING) {
// increase bw for Ring
tmpGraph.bwIntra = tmpGraph.bwInter = speedArray[--speedIndex];
goto search;
} else if (graph->pattern == NCCL_TOPO_PATTERN_NVLS && tmpGraph.bwInter == graph->bwInter && tmpGraph.bwInter < tmpGraph.bwIntra*2) {
tmpGraph.minChannels = tmpGraph.maxChannels = graph->nChannels;
tmpGraph.bwInter = speedArray[--speedIndex];
goto search;
} else if (tmpGraph.bwIntra == graph->bwIntra && tmpGraph.bwIntra < tmpGraph.bwInter*2) {
// increase bwIntra for trees (2 nodes or collnet)
tmpGraph.bwIntra = speedArray[--speedIndex];
goto search;
}
}
time = -1;
memcpy(&tmpGraph, graph, sizeof(tmpGraph));
}
if (graph->nChannels == 0 && graph->collNet == 0 && graph->pattern != NCCL_TOPO_PATTERN_NVLS) {
WARN("Could not find a path for pattern %d, falling back to simple order", graph->pattern);
for (int i=0; i<ngpus; i++) graph->intra[i] = system->nodes[GPU].nodes[i].gpu.rank;
graph->inter[0] = graph->inter[1] = 0;
graph->bwIntra = graph->bwInter = 0.1;
graph->typeIntra = graph->typeInter = PATH_SYS;
graph->nChannels = 1;
}
return ncclSuccess;
}
ncclTopoSearchRec
ncclTopoSearchRec执行ncclTopoCompute触发的每一次搜索。根据是否有网络节点,ncclTopoSearchRec内部通过调用ncclTopoSearchRecNet或者ncclTopoSearchTryGpu展开搜索。
/* Search Patterns
*
* Intra-node
* Ring : GPU a -> GPU b -> .. -> GPU x -> GPU a
* (=Split Tree Loop)
* Tree : GPU a -> GPU b -> .. -> GPU x
* (=Split Tree)
*
* Inter-node
* Ring : NET n -> GPU a -> GPU b -> .. -> GPU x -> NET n (or m if crossNic)
* Tree : NET n -> GPU a -> GPU b -> .. -> GPU x
* `--> NET n (or m if crossNic)
* Split Tree : NET n -> GPU a -> GPU b -> .. -> GPU x
* `--> NET n (or m if crossNic)
* Split Tree Loop : NET n -> GPU a -> GPU b -> .. -> GPU x -> GPU a
* `--> NET n (or m if crossNic)
*/
ncclResult_t ncclTopoSearchRec(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, int* time) {
// Initialize backToNet and backToFirstRank based on the search criteria
int backToNet, backToFirstRank;
NCCLCHECK(ncclTopoSearchParams(system, graph->pattern, &backToNet, &backToFirstRank));
if (system->nodes[NET].count) {
// Start from NET
ncclTopoSearchRecNet(system, graph, saveGraph, backToNet, backToFirstRank, time);
} else {
// Intra-node only.
if (graph->pattern == NCCL_TOPO_PATTERN_NVLS) {
NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, 0, time, -1, -1, graph->nChannels));
return ncclSuccess;
} else if (graph->nChannels == 0) {
// Try PCI order first
NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, FORCED_ORDER_PCI, time, -1, -1, 0));
} else {
// Also try to replay previous channel
int g;
NCCLCHECK(ncclTopoReplayGetGpu(system, graph, -1, &g));
NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, FORCED_ORDER_REPLAY, time, -1, -1, g));
}
if (graph->sameChannels == 0 || graph->nChannels == 0) {
// Finally, try all other possibilities unless we are forced to use the same channels
for (int g=0; g<system->nodes[GPU].count; g++) {
NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, 0, time, -1, -1, g));
}
}
}
return ncclSuccess;
}
ncclTopoSearchRecNet
ncclTopoSearchRecNet是有NET节点时的搜索入口。该函数将graph->inter[graph->nChannels*2]设置好后启动ncclTopoSearchTryGpu。
ncclResult_t ncclTopoSearchRecNet(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, int backToNet, int backToFirstRank, int* time) {
const int bw = graph->bwInter;
int* nets;
NCCLCHECK(ncclCalloc(&nets, system->nodes[NET].count));
int netCount;
NCCLCHECK(ncclTopoSelectNets(system, graph->typeInter, -1, nets, &netCount));
for (int i=0; i<netCount; i++) {
if (graph->pattern == NCCL_TOPO_PATTERN_NVLS && i>0) continue; // skip other NETs for NVLS
int n = nets[(graph->nChannels+i)%netCount];
struct ncclTopoNode* net = system->nodes[NET].nodes+n;
if (graph->collNet && net->net.collSupport == 0) continue; // skip NETs without collectives support if graph->collNet is set
if (net->net.bw < bw) continue; // skip NETs with insufficient bandwidth
if (graph->crossNic && (graph->nChannels & 1) && net->id != graph->inter[(graph->nChannels-1)*2+1]) continue; // if crossNic, in and out must be on different NICs
graph->inter[graph->nChannels*2] = net->id;
graph->latencyInter = net->net.latency;
for (int i=0; i<system->nodes[NET].count; i++) {
if ((system->nodes[NET].nodes[i].net.asic == net->net.asic) &&
(system->nodes[NET].nodes[i].net.port == net->net.port)) {
system->nodes[NET].nodes[i].net.bw -= bw;
}
}
if (graph->pattern == NCCL_TOPO_PATTERN_NVLS) {
// NVLS search only tries to find NIC:GPU combinations to compute the heads.
if (graph->nChannels < netCount) {
int gpu;
NCCLCHECK(ncclTopoGetLocalGpu(system, net->id, &gpu));
if (gpu != -1) NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, 0, time, NET, n, gpu));
}
} else {
if (graph->nChannels > 0) {
// Try to replay the last channel
int g;
NCCLCHECK(ncclTopoReplayGetGpu(system, graph, -1, &g));
NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, FORCED_ORDER_REPLAY, time, NET, n, g));
}
if (graph->nChannels == 0 || graph->sameChannels == 0) {
if (graph->nChannels == 0 && system->nodes[NVS].count == 0) {
// Always try the PCI order first to set a reference, but don't count in the timeout nor let it run for long
int t = 1 << 10;
NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, FORCED_ORDER_PCI, &t, NET, n, 0));
if (t == -1) *time = -1;
}
// Then try the most local GPUs
float maxBw = 0;
int minHops = 0xfffffff;
struct ncclTopoLinkList* paths = net->paths[GPU];
for (int g=0; g<system->nodes[GPU].count; g++) {
if (paths[g].bw > maxBw) {
maxBw = paths[g].bw;
minHops = paths[g].count;
} else if (paths[g].bw == maxBw && paths[g].count < minHops) {
minHops = paths[g].count;
}
}
if (maxBw >= bw) {
for (int i=0; i<system->nodes[GPU].count; i++) {
int g = (graph->nChannels+i)%system->nodes[GPU].count;
if (paths[g].bw == maxBw && paths[g].count == minHops) {
NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, 0, time, NET, n, g));
}
}
}
}
}
for (int i=0; i<system->nodes[NET].count; i++) {
if ((system->nodes[NET].nodes[i].net.asic == net->net.asic) &&
(system->nodes[NET].nodes[i].net.port == net->net.port)) {
system->nodes[NET].nodes[i].net.bw += bw;
}
}
}
free(nets);
return ncclSuccess;
}
ncclTopoSearchTryGpu
ncclTopoSearchTryGpu是搜索GPU节点时的搜索入口。该函数调用递归函数ncclTopoSearchRecGpu完成搜索过程。
ncclResult_t ncclTopoSearchTryGpu(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, int step, int backToNet, int backToFirstRank, int forcedOrder, int *time, int type, int index, int g) {
const uint64_t flag = 1ULL<<(graph->nChannels);
struct ncclTopoNode* gpu;
NCCLCHECK(ncclTopoFollowPath(system, graph, type, index, GPU, g, 1, &gpu));
if (gpu) {
gpu->used ^= flag;
NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, gpu, step, backToNet, backToFirstRank, forcedOrder, time));
gpu->used ^= flag;
NCCLCHECK(ncclTopoFollowPath(system, graph, type, index, GPU, g, -1, &gpu));
}
return ncclSuccess;
}
ncclTopoSearchRecGpu
ncclTopoSearchTryGpu逻辑的主要实现在ncclTopoSearchRecGpu中。该函数不断递归搜索,递归终止条件是step==ngpu,即需要遍历所有GPU节点。当终止条件到达时,通过ncclTopoCompareGraphs函数判断是否找到更优的方案,如果graph->nChannels < graph->maxChannels此时针对新通道展开新一轮搜索。搜索过程中,不同的step处理方式不同,一般而言便是不断寻找下一个GPU,但比如遇到step == backToFirstRank等特殊情况则需要找到初始的GPU节点完成环的回路。在搜索推进过程中会不断调用ncclTopoFollowPath函数进行剪枝,该函数判断下一跳是否会引入带宽瓶颈,如果不会则继续往前搜索,否则可以提前结束搜索。
ncclResult_t ncclTopoSearchRecGpu(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, struct ncclTopoNode* gpu, int step, int backToNet, int backToFirstRank, int forcedOrder, int *time) {
if ((*time) <= 0) return ncclSuccess;
(*time)--;
int ngpus = system->nodes[GPU].count;
if (step == ngpus) {
// Determine whether we found a better solution or not
int copy = 0;
graph->nChannels++;
NCCLCHECK(ncclTopoCompareGraphs(system, graph, saveGraph, ©));
if (copy) {
memcpy(saveGraph, graph, sizeof(struct ncclTopoGraph));
if (graph->nChannels == graph->maxChannels) *time = -1;
}
if (graph->nChannels < graph->maxChannels) {
// not reaching maxChannels, continue to search
NCCLCHECK(ncclTopoSearchRec(system, graph, saveGraph, time));
}
graph->nChannels--;
return ncclSuccess;
}
graph->intra[graph->nChannels*ngpus+step] = gpu->gpu.rank;
int g = gpu - system->nodes[GPU].nodes;
if (step == backToNet) {
// first get back to NIC
if (system->nodes[NET].count) {
int startNetIndex;
NCCLCHECK(getNetIndex(system, graph->inter[graph->nChannels*2], &startNetIndex));
struct ncclTopoNode* startNet = system->nodes[NET].nodes+startNetIndex;
int netCount;
int* nets;
NCCLCHECK(ncclCalloc(&nets, system->nodes[NET].count));
NCCLCHECK(ncclTopoSelectNets(system, graph->typeInter, g, nets, &netCount));
for (int i=0; i<netCount; i++) {
int n = nets[i];
struct ncclTopoNode* net = system->nodes[NET].nodes+n;
if (graph->pattern == NCCL_TOPO_PATTERN_TREE && net->id != startNet->id) continue; // Trees are symmetric
if (graph->crossNic != 1 && (net->net.asic != startNet->net.asic || net->net.port != startNet->net.port)) continue;
if (graph->crossNic && (graph->nChannels & 1) && net->id != graph->inter[(graph->nChannels-1)*2]) continue;
// Balanced Tree : count half of the bandwidth on first two GPUs
int nextBackToNet = -1;
float bwInterSave = graph->bwInter;
if (graph->pattern == NCCL_TOPO_PATTERN_BALANCED_TREE) {
// Count half of the bandwidth on each of the first two GPUs
if (step == 0) nextBackToNet = 1;
else if (net->id != graph->inter[graph->nChannels*2+1]) continue;
graph->bwInter /= 2;
}
NCCLCHECK(ncclTopoFollowPath(system, graph, GPU, g, NET, n, 1, &net));
graph->bwInter = bwInterSave;
if (net) {
graph->inter[graph->nChannels*2+1] = net->id;
NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, gpu, step, nextBackToNet, backToFirstRank, forcedOrder, time));
if (graph->pattern == NCCL_TOPO_PATTERN_BALANCED_TREE) graph->bwInter /= 2;
NCCLCHECK(ncclTopoFollowPath(system, graph, GPU, g, NET, n, -1, &net));
graph->bwInter = bwInterSave;
}
}
free(nets);
}
} else if (graph->pattern == NCCL_TOPO_PATTERN_NVLS) {
NCCLCHECK(ncclTopoSearchTryNvls(system, graph, saveGraph, g, ngpus, time));
} else if (step < system->nodes[GPU].count-1) {
// Go to next GPU
int next[NCCL_TOPO_MAX_NODES];
int count;
if (forcedOrder == FORCED_ORDER_PCI) { // Try the PCI order
next[0] = step+1;
count = 1;
} else if (forcedOrder == FORCED_ORDER_REPLAY) { // Try last channel order
NCCLCHECK(ncclTopoReplayGetGpu(system, graph, step, next));
count = 1;
} else { // Normal search
NCCLCHECK(ncclTopoSearchNextGpuSort(system, graph, gpu, next, &count, backToNet == -1 ? 0 : backToNet == step+1 ? 1 : -1 ));
}
for (int i=0; i<count; i++) {
NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, step+1, backToNet, backToFirstRank, forcedOrder, time, GPU, g, next[i]));
}
} else if (step == backToFirstRank) {
// Find first GPU and loop back to it
int p;
NCCLCHECK(getGpuIndex(system, graph->intra[graph->nChannels*ngpus], &p));
struct ncclTopoNode* firstGpu;
NCCLCHECK(ncclTopoFollowPath(system, graph, GPU, g, GPU, p, 1, &firstGpu));
if (firstGpu) {
NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, firstGpu, step+1, backToNet, -1, forcedOrder, time));
NCCLCHECK(ncclTopoFollowPath(system, graph, GPU, g, GPU, p, -1, &firstGpu));
}
} else {
// Next path
NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, gpu, ngpus, -1, -1, forcedOrder, time));
}
return ncclSuccess;
}
ncclTopoFollowPath
ncclTopoFollowPath是搜索过程中的剪枝函数,其寻找type1/index1节点至type2/index2节点的路径类型和带宽是否满足ncclTopoGraph中typeintra,bwIntra,bwInter以及typeinter的要求。首先排除路径类型不匹配的情况(比如graph要求NVL而路径却是PCI),如路径类型判断通过,还需调用followPath判断路径带宽是否满足要求。
// Try to go from node type1/index1 to no type2/index2. mult indicates whether we are counting the bandwidth (1) or undoing (-1).
// Set node to the destination node if successful, NULL otherwise.
static ncclResult_t ncclTopoFollowPath(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, int type1, int index1, int type2, int index2, int mult, struct ncclTopoNode** node) {
// First handle easy cases
*node = system->nodes[type2].nodes+index2;
if (type1 == -1) return ncclSuccess;
struct ncclTopoNode* node1 = system->nodes[type1].nodes+index1;
struct ncclTopoLinkList* path = node1->paths[type2]+index2;
struct ncclTopoNode* node2 = system->nodes[type2].nodes+index2;
struct ncclTopoLinkList* revPath = node2->paths[type1]+index1;
if (path == NULL) {
WARN("No path computed to go from %s/%d to %s/%d", topoNodeTypeStr[type1], index1, topoNodeTypeStr[type2], index2);
return ncclInternalError;
}
// Now check link type
*node = NULL;
int intra = (type1 == GPU || type1 == NVS) && (type2 == GPU || type2 == NVS);
float bw = intra ? graph->bwIntra : graph->bwInter;
int type = intra ? graph->typeIntra : graph->typeInter;
if (mult == 1 && (path->type > type)) return ncclSuccess;
if (mult == 1 && (graph->pattern == NCCL_TOPO_PATTERN_BALANCED_TREE ||
graph->pattern == NCCL_TOPO_PATTERN_TREE ||
graph->pattern == NCCL_TOPO_PATTERN_SPLIT_TREE) &&
(revPath->type > type)) return ncclSuccess;
bw *= mult;
// Check there is enough bandwidth on paths.
int step = 0;
NCCLCHECK(followPath(path, node1, path->count, bw, &step));
if (step < path->count) goto rewind;
// Enough bandwidth : return destination node.
graph->nHops += mult*path->count;
*node = system->nodes[type2].nodes+index2;
return ncclSuccess;
rewind:
// Not enough bandwidth : rewind and exit.
NCCLCHECK(followPath(path, node1, step, -bw, &step));
return ncclSuccess;
}
followPath
followPath函数便是判断一条路径带宽是否满足要求的函数。
// Check if there is enough bandwidth on the path starting from start node with maxSteps steps and bw bandwidth.
static ncclResult_t followPath(struct ncclTopoLinkList* path, struct ncclTopoNode* start, int maxSteps, float bw, int* steps) {
float pciBw = bw;
// Check if there is INTEL CPU in the path, if so, we need to consider the overhead of P2P between INTEL CPU
for (int step=0; step<path->count; step++) {
struct ncclTopoNode* node = path->list[step]->remNode;
if (node->type == CPU) {
// Account for P2P inefficiency through Intel CPU RC
if (path->type == PATH_PHB && start->type == GPU &&
node->cpu.arch == NCCL_TOPO_CPU_ARCH_X86 &&
node->cpu.vendor == NCCL_TOPO_CPU_VENDOR_INTEL) {
pciBw = INTEL_P2P_OVERHEAD(bw);
}
}
}
// Check if there is enough bandwidth on the path
struct ncclTopoNode* node = start;
for (int step=0; step<maxSteps; step++) {
struct ncclTopoLink* link = path->list[step];
struct ncclTopoLink* revLink = NULL;
float fwBw = link->type == LINK_PCI ? pciBw : bw;
// Update reverse bandwidth if needed, based on the type of the link and the type of the nodes
float revBw = 0;
if (link->remNode->type == GPU && link->remNode->gpu.cudaCompCap < 80 && start->type != GPU) {
if (revLink == NULL) NCCLCHECK(findRevLink(node, link->remNode, link->type, &revLink));
revBw += fwBw/8;
}
if (link->remNode->type == CPU && link->remNode->cpu.arch == NCCL_TOPO_CPU_ARCH_POWER && link->type == LINK_NVL) {
if (revLink == NULL) NCCLCHECK(findRevLink(node, link->remNode, link->type, &revLink));
revBw += fwBw;
}
// Check if there is enough forward bandwidth on the link and backward bandwidth on the reverse link, return the step if not
if (link->bw < fwBw || (revBw && revLink->bw < revBw)) { *steps = step; return ncclSuccess; }
SUB_ROUND(link->bw, fwBw);
if (revBw) SUB_ROUND(revLink->bw, revBw);
node = link->remNode;
}
// we have enough bandwidth on the whole path if we checked all steps
*steps = maxSteps;
return ncclSuccess;
}
上一篇: Datawhale X 李宏毅苹果书 AI夏令营 Task3 批量归一化、卷积神经网络、自注意力机制原理 笔记
下一篇: 人工智能深度学习系列—Wasserstein Loss:度量概率分布差异的新视角
本文标签
声明
本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。