AI - 碰撞避免算法分析(ORCA)

CSDN 2024-06-30 08:31:03 阅读 77

对比VO/RVO

ORCA算法检测碰撞的原理和VO/RVO基本一样的,只是碰撞区域的计算去掉了一定时间以外才可能发生的碰撞,因此碰撞区域的扇形去掉了前面的部分,由圆锥头变成了个圆

在这里插入图片描述

另一个最主要的区别是,求新的速度,是根据相对多个不同物体生成的半平面计算获得。

半平面:

在这里插入图片描述

上图里,u即之前VO和RVO求出的相对速度避免碰撞需要偏移的最短速度向量VO/RVO分析。VO/RVO里由于只考虑避障双方的两个物体,所以期望速度Vaopt加上了u之后,便获得了结果。在ORCA里,会考虑多个碰撞物体,因此会过Vaopt加上u/2之后的点,做u向量的垂直线,而获得一条直线。这条直线一侧所有的点(即ORCA半平面)表示的速度,都会让a不与b相撞。

对于多个碰撞物体,可以求出多个半平面,通过这些半平面的交集,来确定物体的新速度

论文理论的分析

具体的分析网上有挺多的,理论本身还是比较好理解的,这里直接转载别人的了ORCA(RVO2)算法优化整理版

源码分析

ORCA源码地址

RVOSimulator

RVOSimulator相当于整个碰撞避免逻辑的管理模拟器。

一些参数

timeStep_:管理器每次模拟的时间间隔,传入的基本就是游戏运行的每帧时间

kdTree_:一个数组结构的KD树,用来管理每个机器人的相邻目标

agents_:管理器控制的机器人

obstacles_:管理器控制的静态障碍物

主要函数:

addAgent:向管理器添加需要进行碰撞避免处理的机器人

doStep:模拟一次所有机器人碰撞避免处理:先构建kd树,计算每个机器人的相邻目标,在计算新的速度,然后更新位置

void RVOSimulator::doStep() {

kdTree_->buildAgentTree();

#ifdef _OPENMP

#pragma omp parallel for

#endif /* _OPENMP */

for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {

agents_[i]->computeNeighbors(kdTree_);

agents_[i]->computeNewVelocity(timeStep_);

}

#ifdef _OPENMP

#pragma omp parallel for

#endif /* _OPENMP */

for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {

agents_[i]->update(timeStep_);

}

globalTime_ += timeStep_;

}

KdTree

kd树的原理之前文章有分析过,这里先跳过了

KDTree

Agent

实际碰撞物的代理目标,可以每帧中把游戏实际物体的参数传入,通过RVOSimulator计算后,再取出对应代理目标的位置信息更新游戏实际物体

类似这样:

m_sim->setTimeStep(dt);

for(auto aiNode: _aiNodes) {

int idx = aiNode->getId();

Vec2 velocity = aiNode->getVelocity();

m_sim->setAgentMaxSpeed(idx, 1/dt);

m_sim->setAgentPrefVelocity(idx, Vector2(velocity.x * 1 / dt, velocity.y * 1 / dt));

}

m_sim->doStep();

for (auto aiNode : _aiNodes) {

int idx = aiNode->getId();

Vector2 velocity = m_sim->getAgentVelocity(idx);

Vector2 v = m_sim->getAgentPosition(idx);

aiNode->setVelocity(Vec2(velocity.x() * dt, velocity.y() * dt));

aiNode->setPosition(Vec2(v.x(), v.y()));

}

Agent参数

agentNeighbors_:相邻的动态目标

obstacleNeighbors_:相邻的静态障碍物

orcaLines_:储存的半平面信息

newVelocity_:新的避障速度

*position_*位置

prefVelocity_:最佳目标速度

velocity_:当前速度

id_:唯一id

maxNeighbors_:最大避障邻居数(太遥远的过多邻居没有避障意义)

maxSpeed_:最大速度

neighborDist_:查找避障领据的判定位置(太遥远的目标没有避障意义)

radius_:物体半径

timeHorizon_:提前避障的时间,即只判定在一定时间范围内可能的碰撞

timeHorizonObst_:静态物体提前避障的时间

避障核心代码入口

void Agent::computeNewVelocity()

创建静态障碍物的ORCA半平面

其中障碍物的类:当前point_和下一个障碍物nextObstacle_的point_会构成一条直线,unitDir_是当前point_指向下一个point_的单位方向向量,isConvex_表示是否凹角

bool isConvex_;

Obstacle *nextObstacle_;

Vector2 point_;

Obstacle *prevObstacle_;

Vector2 unitDir_;

判断当前静态障碍直线在已处理半平面的右侧,且两个端点到半平面的距离大于物体的半径。因为新速度只能取半平面左侧,即下图中的情况,则新速度永远不会与当前处理的静态障碍直线相交。可以直接忽略

在这里插入图片描述

const Vector2 relativePosition1 = obstacle1->point_ - position_;

const Vector2 relativePosition2 = obstacle2->point_ - position_;

bool alreadyCovered = false;

for (size_t j = 0; j < orcaLines_.size(); ++j) {

if (det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVO_EPSILON && det(invTimeHorizonObst * relativePosition2 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVO_EPSILON) {

alreadyCovered = true;

break;

}

}

半平面的坐标计算都是以自身位置为坐标系计算。因此障碍物直线的坐标也要转换一下。即relativePosition1

代码里invTimeHorizonObst根据不同的判定时间,向量长度会有不同的缩放,但相对比例是不变的,分析的时候可以都当成1来处理,来忽略掉。

det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction)

这行代码是半平面的点到障碍物直线一个端点的向量,与半平面单位方向向量取叉积,因为叉积的模等于两矢量各自的模的积再乘以两矢量夹角的正弦,其中一个向量为单位矢量,则结果就是另一个向量到单位向量直线上的垂直距离。

>= -RVO_EPSILON 叉积大于0表示在向量逆时针方向,即新的障碍物直线端点在已处理的半平面右边

判定物体的坐标相对于障碍物直线在哪个方向

在这里插入图片描述

描述起来比较拗口,可以看上图,结合代码

const Vector2 obstacleVector = obstacle2->point_ - obstacle1->point_;

const float s = (-relativePosition1 * obstacleVector) / absSq(obstacleVector);

const float distSqLine = absSq(-relativePosition1 - s * obstacleVector);

(-relativePosition1 * obstacleVector) 求点积,两矢量模相乘,再乘夹角的余弦。

即 s = |-relativePosition1|*|obstacleVector| * cosθ / |obstacleVector|

s为物体坐标在障碍物直线上的投影点到障碍物直线起始点的长度,即上图中红色线段长度。s的大小可以表示此时物体在障碍物直线的左边,右边,还是两个端点之间

distSqLine 为物体坐标到障碍物直线的垂直记录,即上图中灰色线段长度

已经碰撞,对于物体相对于障碍物直线的不同碰撞点,做不同处理

if (s < 0.0f && distSq1 <= radiusSq) {

物体与障碍物直线起始点1,即左端点相撞,如果起始点1对应的是凸角的话,就将当前线放入要处理的半平面。至于凹角为什么不处理,我的理解是,如果是凹角的话,物体对于凹角的另一条线的s一定是在0-1之间,即在障碍物直线两个端点之一,处理的权重更大。

在这里插入图片描述

line.point = Vector2(0.0f, 0.0f);

line.direction = normalize(Vector2(-relativePosition1.y(), relativePosition1.x()));

因为静态障碍物是不会动的,因此半平面直接以物体自身为目标点,方向以垂直偏离碰撞点为目的,即上图中白色箭头。

if (s > 1.0f && distSq2 <= radiusSq)

物体与障碍物直线起始点2,即右端点相撞。和左端点类似,只是加了一个判断,就是下图中,obstacle2-unitDir在红线右侧的方向的话,就忽略这条障碍线的碰撞处理,以相邻边的障碍线处理为准

if (obstacle2->isConvex_ && det(relativePosition2, obstacle2->unitDir_) >= 0.0f)

在这里插入图片描述

if (s >= 0.0f && s < 1.0f && distSqLine <= radiusSq)

物体在障碍物两个端点间碰撞,比较简单,直接远离就行,下图红色区域即为新速度可选择区域

在这里插入图片描述

未碰撞,同样根据物体相对障碍物直线的不同位置,做不同处理

if (s < 0.0f && distSqLine <= radiusSq)

物体在障碍物左端点左边,如下图,并且不能是凹角,因为distSqLine <= radiusSq在这个情况下,如果是凹角的话,前一条障碍物直线一定会和物体已经碰撞,则先处理逃离碰撞直线的情况

在这里插入图片描述

接下来这段代码很关键,直接看很难理解,因为代码是直接写了拆解了多个步骤之后的数学公式

const float leg1 = std::sqrt(distSq1 - radiusSq);

leftLegDirection = Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;

rightLegDirection = Vector2(relativePosition1.x() * leg1 + relativePosition1.y() * radius_, -relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;

在这里插入图片描述

先说结论,leftLegDirection和rightLegDirection就是上图中绿色箭头所指的方向,两根线都是障碍物直线端点到圆的切线。

在这里插入图片描述

在这里插入图片描述

上图中红色箭头为向量,即障碍物直线左端点指向物体中心的

(-relativePosition1.x,-relativePosition1.y)

将该向量,逆时针旋转θ

在这里插入图片描述

在这里插入图片描述

将cosθ和sinθ代入,提取出分母 1/distSq1

最后将向量取反,解出来的结果就是

Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1

获得了leftLegDirection,即上图中绿色箭头。

leftLegDirection同理,只不过是顺时针旋转

if (s > 1.0f && distSqLine <= radiusSq)

物体在障碍物右端点右边,与左边同理,略过

物体在障碍物直线之间

如果端点的角是凸角的情况下,就是leftLegDirection,rightLegDirection如下图所示

在这里插入图片描述

如果端点是凹角,则直接取平行于障碍物直线的方向

分析两根leg线是否会和障碍物直线的相邻边碰撞

if (obstacle1->isConvex_ && det(leftLegDirection, -leftNeighbor->unitDir_) >= 0.0f)

这行判断为true的情况是左端点相邻边的反方向在左leg的左边,如下图所示

在这里插入图片描述

因此速度域的边界不能以左leg为准,否则会和相邻边产生碰撞。直接更新左leg的方向为相邻边的反向。

右边同理

根据当前速度在速度障碍域的不同位置做不同处理

const float t = (obstacle1 == obstacle2 ? 0.5f : ((velocity_ - leftCutoff) * cutoffVec) / absSq(cutoffVec));

const float tLeft = ((velocity_ - leftCutoff) * leftLegDirection);

const float tRight = ((velocity_ - rightCutoff) * rightLegDirection);

上述t的含义表示了当前速度更靠近左右两边哪个端点。0-0.5更靠近左,0.5-1更靠近右,0.5正好居中。

tleft和tright就是判断当前速度投影到leg直线上,依次判断在leg射线上的哪个部分。小于0,则在leg射线的外部

判断物体是否以远离速度障碍域两个端点为目标

if ((t < 0.0f && tLeft < 0.0f) || (obstacle1 == obstacle2 && tLeft < 0.0f && tRight < 0.0f))

if (t > 1.0f && tRight < 0.0f)

在这里插入图片描述

如上图,速度点velocity_rightCutoff-leftCutoff的投影不在向量内部,在leftLegDirection方向的投影也不在leftLegDirection内部(上图浅灰色直线),则条件判断为true。

因此以远离端点为目标。

即灰色箭头为leftCutoff指向velocity_,长度为物体半径radius_,方向顺时针旋转90度即为红色箭头方向,由此够成的绿色区域为速度半平面

const float distSqCutoff = ((t < 0.0f || t > 1.0f || obstacle1 == obstacle2) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + t * cutoffVec)));

const float distSqLeft = ((tLeft < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + tLeft * leftLegDirection)));

const float distSqRight = ((tRight < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (rightCutoff + tRight * rightLegDirection)));

这三个变量是分别获取物体速度velocity_到两个leg以及障碍物直线的垂直距离,如果投影不在向量内部,则视作无穷大

判断物体是以远离速度障碍域哪个向量为目标velocity_cutoffVecleftLegDirectionrightLegDirection哪个向量方向的直线最近,则远离哪个

根据*velocity_*的位置分别是下图三种情况

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

创建动态物体间的ORCA半平面

首先定义了几个相对参数

relativePosition:相对位置

relativeVelocity:相对速度

combinedRadius:自身半径视作0后,对方的相对半径

处理双方未碰撞的情况

distSq > combinedRadiusSq

判断是否往小圆上计算u

if (dotProduct < 0.0F && dotProduct * dotProduct > combinedRadiusSq * wLengthSq)

先看下面这张图

在这里插入图片描述

图中红色箭头为代码里的向量w,绿线为combineRadiu,黄色线为relaticePosition

dotProduct = w * relativePosition求点积,如果小于0,说明wrelativePosition反向,可能需要往cutoff-circle处调整相对速度。

接下来只要确定证明红色箭头在绿线和黄色线之间,

∠a < ∠b

==>> cosa > cosb

(cosa = dotProduct / |w| / |relativePosition|)

(cosb = combineRadius / |relativePosition|)

==>> dotProduct / |w| / |relativePosition| > combineRadius / |relativePosition|

==>> dotProduct > combineRadius * |w|

两边各平方

==>> dotProduct * dotProduct > combinedRadiusSq * wLengthSq

line.direction = Vector2(unitW.y(), -unitW.x());

u = (combinedRadius * invTimeHorizon - wLength) * unitW;

这段求得向量u的大小为下图中紫色线段长度,方向与w同向,半平面的方向为w顺时针旋转90°

在这里插入图片描述

判断往哪个leg方向计算u

if (det(relativePosition, w) > 0.0F)

求向量wrelativePosition的叉积,可以判断出wrelativePosition的左边还是右边,以此确定离哪个leg更近

求解半平面的方向,原理和前面静态障碍物求leftLegDirection、rightLegDirection方向是一样的,最终推导的公式也是类似的,这里不再重复了,根据不同leg求得的不同方向都在下图黑色箭头中标出来了

在这里插入图片描述

u = (relativeVelocity * line.direction) * line.direction - relativeVelocity;

u的代码含义也在上图中标出来了

处理双方已碰撞的情况

本质也是往在圆的里面远离圆心,和未碰撞往小圆上计算u的原理一样

计算半平面的位置

line.point = velocity_ + 0.5F * u;

u计算出来后半平面的位置也就确定了

半平面交集求解

std::size_t linearProgram2(const std::vector<Line> &lines, float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result)

lines:所有半平面

radius:求解时的限定圆形半径(即物体最大速度)

optVelocity:当前物体的期望速度

directionOpt:默认false,执行linearProgram3(交集没有可行解)为true

result:当前步骤求出的最新速度

初始一下默认优化速度

if (directionOpt) {

result = optVelocity * radius;

} else if (absSq(optVelocity) > radius * radius) {

result = normalize(optVelocity) * radius;

} else {

result = optVelocity;

}

遍历所有半平面,对每个半平面进行线性处理

if (det(lines[i].direction, lines[i].point - result) > 0.0F)

只处理在当前半平面右侧的速度,左侧的速度本身就属于当前半平面的可行解。(注意叉积大于0虽然是逆时针方向。但是这里的是result指向lines[i].point,不是lines[i].point指向result)

线性规划求解

计算当前半平面的可行解,返回有无可行解

bool linearProgram1(const std::vector<Line> &lines, std::size_t lineNo,float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result)

linearProgram2参数一样,多了个 lineNo:当前处理的半平面索引id

这个行数是求可行解的核心代码,也是线性规划的过程

在这里插入图片描述

const float dotProduct = lines[lineNo].point * lines[lineNo].direction;

dotProduct就是向量lines[lineNo].pointlines[lineNo].direction上的投影长度。即上图中两个黑色线段的长度

圆的半径,即物体最大速度,必须在半平面的左边才能有解。即上图中粉色线必须大于紫色线。

紫色线标为len,即物体原点到半平面的垂直距离。

需要 radius > len

==>>radius * radius > len * len

(灰线长度为 |lines[lineNo].point|,根据勾股定理)

==>> sqr(radius) > absSq(lines[lineNo].point - sqr(dotProduct)

==>> sqr(radius) + sqr(dotProduct) - absSq(lines[lineNo].point > 0

==>> discriminant > 0

因此,下面代码表示无解退出

if (discriminant < 0.0f) {

return false;

}

同时sqrtDiscriminant还表示上图黄色线段的长度

根据勾股定理

discriminant = sqr(radius) - sqr(len)

(sqr(len) = absSq(lines[lineNo].point - sqr(dotProduct))

==>> discriminant = sqr(radius) - absSq(lines[lineNo].point + sqr(dotProduct)

const float sqrtDiscriminant = std::sqrt(discriminant);

float tLeft = -dotProduct - sqrtDiscriminant;

float tRight = -dotProduct + sqrtDiscriminant;

tLeft和tRight即为上图中橙色和蓝色线段的长度。分别表示圆的两个交点到lines[lineNo].point的距离

比较已处理过的半平面

for (size_t i = 0; i < lineNo; ++i)

在当前 lineNo 半平面线性规划求解时,需要和之前处理过的半平面对比来缩小解的范围。最初的解范围是速度圆和半平面直线的两个交点范围。

if (std::fabs(denominator) <= RVO_EPSILON) {

if (numerator < 0.0f) {

return false;

}

else {

continue;

}

}

如果 lineNo 半平面 和 i 半平面平行即*det(lines[lineNo].direction, lines[i].direction)*约等于0,没有交点与当前范围对比,所以进行特殊处理

优因为当前 result 是在 lineNo 半平面右边, 所以如果 i 半平面在 lineNo 半平面左边

(det(lines[i].direction, lines[lineNo].point - lines[i].point) > 0)

一定是和 lineNo 反向,不会对当前求解范围有影响,因此 continue

但是 ilineNo 右边的话这里的处理我有些没看懂, 如果 ilineNo 反向的话,就没有可行解 return false 。但是 ilineNo 如果同向的话,应该也是 continue。有大佬看懂的话方便留个评论解释一下吗。

在这里插入图片描述

const float t = numerator / denominator;

t 的含义是上图中两个半平面交点 o 到 当前半平面 lines[lineNo].point 的距离

因为

图中红色箭头为向量 lines[lineNo].point - lines[i].point

半平面的方向向量,长度都为1, 即 |lines[i].direction| = 1

叉积为两向量模乘正弦,因此 numerator 为上图中紫色线段长度,即 lines[lineNo].pointi 半平面的垂直距离

此时以两个半平面交点 o 为起点,画一个向量 lines[lineNo].direction ,可以得出 denominator 为上图中棕色线段的长度

又因为 |lines[lineNo].direction| = 1

并且 t / |lines[lineNo].direction| = numerator / denominator

即上图黄色线段

if (denominator >= 0.0F) {

tRight = std::min(tRight, t);

} else {

tLeft = std::max(tLeft, t);

}

if (tLeft > tRight) {

return false;

}

可行解最初的范围是大于 tLeft 小于 tRight

上图中,当 i 半平面的方向在 lineNo 半平面的右边。此时的可行解一定是大于交点 o 的区域

因此 denominator < 0 时, 需要 ttLeft 对比谁更大。反之同理

const float t = lines[lineNo].direction * (optVelocity - lines[lineNo].point);

if (t < tLeft) {

result = lines[lineNo].point + tLeft * lines[lineNo].direction;

} else if (t > tRight) {

result = lines[lineNo].point + tRight * lines[lineNo].direction;

} else {

result = lines[lineNo].point + t * lines[lineNo].direction;

}

在这里插入图片描述

如上图所示 t 代表了期望速度投射到半平面的阴影长度。根据 t 的不同位置求的不得解

if (directionOpt)

directionOpttrue 时,不会有可行解,直接根据期望速度与半平面方向是否同向来取交点

无可行解

void linearProgram3(const std::vector<Line> &lines, std::size_t numObstLines,std::size_t beginLine, float radius,Vector2 &result)

numObstLines:静态障碍物半平面的数量

beginLine:索引id,表示从哪条半平面开始无法求出可行解

另外三个参数和之前一样

if (det(lines[i].direction, lines[i].point - result) > distance)

这行代码是求当前解到之后的每条无解半平面的垂直距离,以处理距离最远的半平面为准。我的理解是,离的最远的半平面,是碰撞机率最大的,因为他需要最大的调整速度,才能够调整回不碰撞的速度可行域

这个函数里的遍历都是去掉了静态障碍物的半平面的,因为静态障碍物自身是无法进行碰撞避免处理的

float determinant = det(lines[i].direction, lines[j].direction);

if (std::fabs(determinant) <= RVO_EPSILON) {

if (lines[i].direction * lines[j].direction > 0.0f) {

continue;

}

else {

line.point = 0.5f * (lines[i].point + lines[j].point);

}

}

else {

line.point = lines[i].point + (det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction;

}

这段代码是,将当前处理的 j 半平面与已处理过的 i 半平面做对比。

如果两者平行并同向即重合了,则略过

如果平行但反向,获取两个半平面起始点的连线中点坐标

如果不平行,则获取两个半平面交点的坐标(推导原理和前面一样)

line.direction = normalize(lines[j].direction - lines[i].direction);

这行代码,是让已处理的半平面往 此当前处理的半平面,旋转一半的角度再取反

形成新的半平面交集,再进行求解

在这里插入图片描述

如上图,最初的三个半平面可行域是绿色阴影部分,没有公共交集。

i 半平面和 i+1 半平面都往 j 半平面方向旋转了一半夹角的长度,再取反,形成新的蓝色阴影区域,有公共交集。再进行线性规划求解

旋转的角度是根据 normalize(lines[j].direction - lines[i].direction) 设置的

我试着改变了 lines[i].direction 的长度,使旋转的角度不同

float len = 1;

line.direction = normalize(lines[j].direction * len - lines[i].direction);

len为1是旋转1/2的夹角,len越接近0,旋转后的半平面越接近 i 半平面的反向,len越大,旋转后的半平面越近 *j 半平面。

演示效果

静态图

以下是几种设置不同旋转角度后,求得的速度,以四个球最下方的那个球为分析目标,

三根不同的射线就是三条半平面,此时的三个半平面是没有可行解的。球的黑点位置就是新的速度朝向。

设置不同len时的,物体的新速度朝向:

len = 1,旋转1/2角度

在这里插入图片描述

len = 0.5

在这里插入图片描述

len = 0.1

在这里插入图片描述

len = 5

在这里插入图片描述

len = 10

在这里插入图片描述

i半平面直接转到j半平面方向

在这里插入图片描述

可以看到,不同的参数,物体的避障趋势是不一样的,但是最终都是可以成功避障的

动态效果

len = 1,旋转1/2夹角

在这里插入图片描述

len < 1/2,更趋近于0,i半平面旋转更趋近于自身反向

在这里插入图片描述

len > 1,更趋近于无穷大,i半平面旋转更趋近于j半平面方向

在这里插入图片描述

i半平面转到j半平面方向

在这里插入图片描述

大量物体

len = 1,旋转1/2夹角

在这里插入图片描述

len < 1/2,更趋近于0,i半平面旋转更趋近于自身反向

在这里插入图片描述

len > 1,更趋近于无穷大,i半平面旋转更趋近于j半平面方向

在这里插入图片描述

i半平面转到j半平面方向

在这里插入图片描述

一些问题

某些情况下,可能会出现物体都静止不动的情况

在这里插入图片描述

在这里插入图片描述

有的时候出现双方,避障权重一样,速度一样,方向相对,位置也是相对。

最后都静止不动了。以上述例子来看,下面的球速度始终是垂直向上,上面的球速度始终是垂直向下。双打的速度始终在碰撞半平面的可行域里,但是为了避免碰撞,双方的速度越来越小

在这里插入图片描述

再加上,时间的间隔也非常小

在这里插入图片描述

最终由于浮点数计算,导致物体的位置每帧不变

在这里插入图片描述

位置,速度都不变,ORCA求的新速度也不变,就导致最终的效果是双方最终都停在原地了

但实际项目中,一般不会有这种情况,因为此时只要一个外来的变化量,或者双方目标速度,权重,啥的有一点点变化。就随便一个微量情况,打破了这种平衡,物体就会继续移动下去。只是可能会出现物体在原地磨蹭了很久之后,才相互错开。因此。具体项目在使用源代码的时候,还需要根据不同需求做不同的调整

另一个问题是,在大量物体的情况下,代码运行过程中,实际仍会有许多物体运行到这段代码

/* Collision. Project on cut-off circle of time timeStep. */

const float invTimeStep = 1.0f / sim_->timeStep_;

/* Vector from cutoff center to relative velocity. */

const Vector2 w = relativeVelocity - invTimeStep * relativePosition;

const float wLength = abs(w);

const Vector2 unitW = w / wLength;

line.direction = Vector2(unitW.y(), -unitW.x());

u = (combinedRadius * invTimeStep - wLength) * unitW;

distSq < combinedRadiusSq,产生了碰撞

只是由于处理了碰撞时的半平面情况,以及物体数量比较多,因此在视觉效果上,不太能看得出发生了碰撞



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。