分子性质AI预测挑战赛|Datawahle AI夏令营|代码分享

Data新青年 2024-07-20 15:01:02 阅读 79

赛题背景

在当今科技日新月异的时代,人工智能(AI)技术正以前所未有的深度和广度渗透到科研领域,特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是一种三元复合物由目标蛋白配体、linker、E3连接酶配体组成,靶向降解目标蛋白质。本次大赛聚焦于运用先进的人工智能算法预测其降解效能,旨在激发参赛者创新思维,推动AI技术与化学生物学的深度融合,进一步提升药物研发效率与成功率,为人类健康事业贡献智慧力量。通过此次大赛,我们期待见证并孵化出更多精准、高效的分子性质预测模型,共同开启药物发现的新纪元。

赛事任务与数据

选手根据提供的demo数据集,可以基于demo数据集进行数据增强、自行搜集数据等方式扩充数据集,并自行划分数据。运用深度学习、强化学习或更加优秀人工智能的方法预测PROTACs的降解能力,若DC50>100nM且Dmax<80% ,则视为降解能力较差(demo数据集中Label=0);若DC50<=100nM或Dmax>=80%,则视为降解能力好(demo数据集中Label=1)。

大白话解释:

【训练分子性质分类预测模型】运用深度学习、强化学习或更加优秀人工智能的方法预测PROTACs的降解能力,分类为 降解能力较差/降解能力好 两种结论

评价指标

本次竞赛的评价标准采用f1_score,分数越高,效果越好

解题思路

参赛选手的任务是基于训练集的样本数据,构建一个模型来预测测试集中分子的性质情况。这是一个二分类任务,其中目标是根据分析相关信息以及结构信息等特征,预测该分子的性质标签。具体来说,选手需要利用给定的数据集进行特征工程、模型选择和训练,然后使用训练好的模型对测试集中的用户进行预测,并生成相应的预测结果。

导入必要的库

<code>import numpy as np

import pandas as pd

import joblib

from catboost import CatBoostClassifier

from sklearn.model_selection import StratifiedKFold, KFold, GroupKFold

from sklearn.metrics import f1_score

from rdkit import Chem

from rdkit.Chem import Descriptors,rdMolDescriptors,GraphDescriptors,Lipinski

from rdkit.Chem.rdMolDescriptors import CalcMolFormula, CalcTPSA

from rdkit.Chem.Crippen import MolLogP

from sklearn.feature_extraction.text import TfidfVectorizer

from openfe import OpenFE, tree_to_formula, transform, TwoStageFeatureSelector

from gensim.models import Word2Vec

import tqdm, sys, os, gc, re, argparse, warnings

warnings.filterwarnings('ignore')

pd.set_option('display.max_rows', None)

pd.set_option('display.max_columns', None)

读取数据,删去非空值小于10的列

train = pd.read_excel('./dataset-new/traindata-new.xlsx')

test = pd.read_excel('./dataset-new/testdata-new.xlsx')

# test数据不包含 DC50 (nM) 和 Dmax (%)

train = train.drop(['DC50 (nM)', 'Dmax (%)'], axis=1)

# 定义了一个空列表drop_cols,用于存储在测试数据集中非空值小于10个的列名。

drop_cols = []

for f in test.columns:

if test[f].notnull().sum() < 10:

drop_cols.append(f)

# 使用drop方法从训练集和测试集中删除了这些列,以避免在后续的分析或建模中使用这些包含大量缺失值的列

train = train.drop(drop_cols, axis=1)

test = test.drop(drop_cols, axis=1)

特征工程

# 使用pd.concat将清洗后的训练集和测试集合并成一个名为data的DataFrame,便于进行统一的特征工程处理

data = pd.concat([train, test], axis=0, ignore_index=True)

cols = data.columns[2:]

特征关联性分析

train_label = train.copy()

# 自然数编码()

def label_encode(series):

unique = list(series.unique())

return series.map(dict(zip(

unique, range(series.nunique())

)))

object_cols = train_label.select_dtypes(include=['object']).columns

for col in object_cols:

train_label[col] = label_encode(train_label[col])

features = train_label.columns[1:]

corr = []

for feat in features:

corr.append(abs(train_label[[feat, "Label"]].fillna(0).corr().values[0][1]))

se = pd.Series(corr, index=features).sort_values(ascending=False)

se

data = data.drop(se[-6:].index, axis=1)

提取Smiles特征

DeepChem是一个用于科研的机器学习库。DeepChem最初专注于化学分子的研究,但随着版本更迭,现在其已能更广泛地支持所有类型的科学应用。我觉得这个模块做的比较好的几点在于:

能够方便地将化学分子用统一长度的向量或矩阵表示,便于机器学习数据读入;提供方便使用的机器学习接口,你可以不必专门学习机器学习模块(如Tensorflow 、Pytorch等);封装化程度高,上手容易。但对于需要个性化参数调整的需求就不是很方便了,这个时候就需要查阅源码,在理解的基础上进行调整。

import deepchem as dc

dc_smiles = data['Smiles']

rdkit_featurizer = dc.feat.RDKitDescriptors()

rdkit_feature = rdkit_featurizer.featurize(dc_smiles)

dc_feature = pd.DataFrame(rdkit_feature)

dc_feature.columns = [f'smiles_dc_{ i}' for i in range(dc_feature.shape[1])]

zeros_count = dc_feature.eq(0).sum()

columns_to_drop = zeros_count[zeros_count >= 704].index.tolist()

smiles_feature = dc_feature.drop(columns=columns_to_drop)

提取InChI特征

atomic_masses = {

'H': 1.008, 'He': 4.002602, 'Li': 6.94, 'Be': 9.0122, 'B': 10.81, 'C': 12.01,

'N': 14.01, 'O': 16.00, 'F': 19.00, 'Ne': 20.180, 'Na': 22.990, 'Mg': 24.305,

'Al': 26.982, 'Si': 28.085, 'P': 30.97, 'S': 32.07, 'Cl': 35.45, 'Ar': 39.95,

'K': 39.10, 'Ca': 40.08, 'Sc': 44.956, 'Ti': 47.867, 'V': 50.942, 'Cr': 52.00,

'Mn': 54.938, 'Fe': 55.845, 'Co': 58.933, 'Ni': 58.69, 'Cu': 63.55, 'Zn': 65.38

}

# 函数用于解析单个InChI字符串

def parse_inchi(row):

inchi_str = row['InChI']

formula = ''

molecular_weight = 0

element_counts = { }

# 提取分子式

formula_match = re.search(r"InChI=1S/([^/]+)/c", inchi_str)

if formula_match:

formula = formula_match.group(1)

# 计算分子量和原子计数

for element, count in re.findall(r"([A-Z][a-z]*)([0-9]*)", formula):

count = int(count) if count else 1

element_mass = atomic_masses.get(element.upper(), 0)

molecular_weight += element_mass * count

element_counts[element.upper()] = count

return pd.Series({

'ElementCounts': element_counts

})

# 应用函数到DataFrame的每一行

data[['ElementCounts']] = data.apply(parse_inchi, axis=1)

# 定义存在的key

keys = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn']

# 创建一个空的DataFrame,列名为keys

df_expanded = pd.DataFrame({ key: pd.Series() for key in keys})

# 遍历数据,填充DataFrame

for index, item in enumerate(data['ElementCounts'].values):

for key in keys:

# 将字典中的值填充到相应的列中

df_expanded.at[index, key] = item.get(key, 0)

df_expanded = pd.DataFrame(df_expanded)

zeros_count = df_expanded.eq(0).sum()

columns_to_drop = zeros_count[zeros_count >= 704].index.tolist()

inchi_keys = df_expanded.drop(columns=columns_to_drop)

from rdkit import Chem

from rdkit.Chem import Descriptors, rdMolDescriptors, GraphDescriptors, Lipinski

def calculate_descriptors(inchi):

# 解析InChI字符串,提取分子信息

mol = Chem.MolFromInchi(inchi)

# 氢键供体

h_donors = Descriptors.NumHDonors(mol)

# 氢键受体

h_acceptors = Descriptors.NumHAcceptors(mol)

# 旋转键个数

rotatable_bonds = Descriptors.NumRotatableBonds(mol)

# 芳香环数

aromatic_ring_count = Descriptors.NumAromaticRings(mol)

# 总极性表面积 (TPSA)

tpsa = rdMolDescriptors.CalcTPSA(mol)

# XLogP

xlogp = Descriptors.MolLogP(mol)

# 价电子数

num_valence_electrons = Descriptors.NumValenceElectrons(mol)

# 平均信息含量

avg_ipc = GraphDescriptors.AvgIpc(mol)

# Balaban's J

balaban_j = GraphDescriptors.BalabanJ(mol)

# BertzCT 复杂度

bertz_ct = GraphDescriptors.BertzCT(mol)

# 重原子分子量

heavy_atom_mol_wt = Descriptors.HeavyAtomMolWt(mol)

# 最大绝对部分电荷

max_abs_partial_charge = Descriptors.MaxAbsPartialCharge(mol)

# 最大部分电荷

max_partial_charge = Descriptors.MaxPartialCharge(mol)

# 最小绝对部分电荷

min_abs_partial_charge = Descriptors.MinAbsPartialCharge(mol)

# 最小部分电荷

min_partial_charge = Descriptors.MinPartialCharge(mol)

# 分子的Kappa1

kappa1 = rdMolDescriptors.CalcKappa1(mol)

# 分子的Kappa2

kappa2 = rdMolDescriptors.CalcKappa2(mol)

# 分子的Kappa3

kappa3 = rdMolDescriptors.CalcKappa3(mol)

# 分子的Labute ASA

labute_asa = rdMolDescriptors.CalcLabuteASA(mol)

# 分子的Morgan指纹

morgan_fingerprint = rdMolDescriptors.GetMorganFingerprint(mol, 2)

# 分子的自旋轨道耦合常数

kappa = rdMolDescriptors.CalcPhi(mol)

# 分子的饱和碳环数

num_saturated_carbocycles = rdMolDescriptors.CalcNumSaturatedCarbocycles(mol)

# 分子的饱和杂环数

num_saturated_heterocycles = rdMolDescriptors.CalcNumSaturatedHeterocycles(mol)

# 分子的饱和环数

num_saturated_rings = rdMolDescriptors.CalcNumSaturatedRings(mol)

# 分子的螺原子数

num_spiro_atoms = rdMolDescriptors.CalcNumSpiroAtoms(mol)

# 分子的氧化数

rdMolDescriptors.CalcOxidationNumbers(mol)

# 分子的CSP3分数

fraction_csp3 = Lipinski.FractionCSP3(mol)

# 分子的NHOH计数

nhoh_count = Lipinski.NHOHCount(mol)

# 分子的NO计数

no_count = Lipinski.NOCount(mol)

# 分子的异原子数

num_heteroatoms = Lipinski.NumHeteroatoms(mol)

# 分子的非芳香碳环数

num_aliphatic_carbocycles = Lipinski.NumAliphaticCarbocycles(mol)

# 分子的非芳香杂环数

num_aliphatic_heterocycles = Lipinski.NumAliphaticHeterocycles(mol)

# 分子的非芳香环数

num_aliphatic_rings = Lipinski.NumAliphaticRings(mol)

# 分子的芳烃碳环数

num_aromatic_carbocycles = Lipinski.NumAromaticCarbocycles(mol)

# 分子的芳烃杂环数

num_aromatic_heterocycles = Lipinski.NumAromaticHeterocycles(mol)

# 分子的摩尔折射率

mol_refractivity = Descriptors.MolMR(mol)

return {

"H-Bond Donors": h_donors,

"H-Bond Acceptors": h_acceptors,

"Rotatable Bonds": rotatable_bonds,

"Aromatic Ring Count": aromatic_ring_count,

"TPSA": tpsa,

"XLogP": xlogp,

"Num Valence Electrons": num_valence_electrons,

"Average Information Content": avg_ipc,

"Balaban's J": balaban_j,

"BertzCT Complexity": bertz_ct,

"Heavy Atom Molecular Weight": heavy_atom_mol_wt,

"Max Absolute Partial Charge": max_abs_partial_charge,

"Max Partial Charge": max_partial_charge,

"Min Absolute Partial Charge": min_abs_partial_charge,

"Min Partial Charge": min_partial_charge,

"Kappa1": kappa1,

"Kappa2": kappa2,

"Kappa3": kappa3,

"Labute Accessible Surface Area": labute_asa,

"Spin-Orbit Coupling Constant": kappa,

"Saturated Carbocycles": num_saturated_carbocycles,

"Saturated Heterocycles": num_saturated_heterocycles,

"Saturated Rings": num_saturated_rings,

"Spiro Atoms": num_spiro_atoms,

"CSP3 Fraction": fraction_csp3,

"NHOH Count": nhoh_count,

"NO Count": no_count,

"Heteroatoms": num_heteroatoms,

"Aliphatic Carbocycles": num_aliphatic_carbocycles,

"Aliphatic Heterocycles": num_aliphatic_heterocycles,

"Aliphatic Rings": num_aliphatic_rings,

"Aromatic Carbocycles": num_aromatic_carbocycles,

"Aromatic Heterocycles": num_aromatic_heterocycles,

"Molar Refractivity": mol_refractivity,

}

# 创建一个空的列表以存储提取的特征

features_list = []

# 提取特征并添加到列表中

for inchi in data['InChI']:

features = calculate_descriptors(inchi)

features_list.append(features)

# 将列表转换为DataFrame

inchi_features = pd.DataFrame(features_list)

# 将提取的特征添加到原始数据集

data = pd.concat([data, smiles_feature, inchi_keys, inchi_features], axis=1)

data[:4]

根据关联性分析筛选特征

data = data.drop(['ElementCounts'], axis=1)

# 自然数编码()

def label_encode(series):

unique = list(series.unique())

return series.map(dict(zip(

unique, range(series.nunique())

)))

object_cols = data.select_dtypes(include=['object']).columns

for col in object_cols:

data[col] = label_encode(data[col])

train = data[data.Label.notnull()].reset_index(drop=True)

test = data[data.Label.isnull()].reset_index(drop=True)

features1 = train.columns[1:]

corr1 = []

for feat in features1:

corr1.append(abs(train[[feat, "Label"]].fillna(0).corr().values[0][1]))

se1 = pd.Series(corr1, index=features1).sort_values(ascending=False)

drop_se1 = se1.index[-4:]

# 使用drop方法从训练集和测试集中删除了这些列,以避免在后续的分析或建模中使用这些包含大量缺失值的列

train = train.drop(drop_se1, axis=1)

test = test.drop(drop_se1, axis=1)

train[:3]

# 特征筛选

features = [f for f in train.columns if f not in ['uuid','Label']]

# 构建训练集和测试集

x_train = train[features]

x_test = test[features]

# 训练集标签

y_train = train['Label'].astype(int)

x_train.info()

train.rename(columns=lambda x: re.sub(r'[^\w\s]', '_', x), inplace=True)

test.rename(columns=lambda x: re.sub(r'[^\w\s]', '_', x), inplace=True)

OpenFE特征构造

OpenFE,全称Open Feature Engineering,是一个开源的Python库,专门设计用于简化和自动化特征工程的过程。通过提供一系列的工具和函数,OpenFE使数据科学家和机器学习工程师能够更高效地创建、测试和部署特征。

自动特征生成:OpenFE能够根据现有数据自动创建新的特征,帮助提升模型的性能。特征选择与优化:它提供了多种特征选择方法,帮助用户识别和保留最有价值的特征,同时去除冗余或无关的特征。易于使用的API:OpenFE设计了简洁直观的API,即使是没有太多编程经验的人也能轻松上手。灵活性和可扩展性:用户可以根据自己的需要自定义特征转换规则,使得OpenFE能够适用于各种不同的数据和项目需求。

ofe = OpenFE()

features = ofe.fit(data=x_train, label=y_train, n_jobs=6)joblib.dump(ofe,"ofe.pkl")for feature in ofe.new_features_list:

print(tree_to_formula(feature))x_train, x_test = transform(x_train, x_test, features, n_jobs=6)cat_columns = x_train.select_dtypes(include=['category']).columns

x_train[cat_columns] = x_train[cat_columns].astype(np.int32)

cat_columns = x_test.select_dtypes(include=['category']).columns

x_test[cat_columns] = x_test[cat_columns].astype(np.int32)

模型训练

这里借鉴了《机器学习算法竞赛实战》的代码

lgm

模型特征选择

import numpy as np

import pandas as pd

import lightgbm as lgb

from sklearn.model_selection import KFold

from hyperopt import hp, fmin, tpe

from numpy.random import RandomState

from sklearn.metrics import mean_squared_error,f1_score

def feature_select_wrapper(train, test):

"""

:param train:

:param test:

:return:

"""

print('feature_select_wrapper...')

label = 'Label'

features = train.columns.tolist()

features.remove('uuid')

features.remove('Label')

# 配置模型的训练参数

params_initial = {

'num_leaves': 31,

'learning_rate': 0.1,

'boosting': 'gbdt',

'min_child_samples': 20,

'bagging_seed': 2020,

'bagging_fraction': 0.7,

'bagging_freq': 1,

'feature_fraction': 0.7,

'max_depth': -1,

'metric': 'auc',

'reg_alpha': 0,

'reg_lambda': 1,

'objective': 'binary'

}

ESR = 30

NBR = 10000

VBE = 50

kf = KFold(n_splits=5, random_state=2020, shuffle=True)

fse = pd.Series(0, index=features)

callbacks = [lgb.early_stopping(stopping_rounds=30, verbose=50)]

for train_part_index, eval_index in kf.split(train[features], train[label]):

# 模型训练

train_part = lgb.Dataset(train[features].loc[train_part_index],

train[label].loc[train_part_index])

eval1 = lgb.Dataset(train[features].loc[eval_index],

train[label].loc[eval_index])

bst = lgb.train(params_initial, train_part, num_boost_round=10000,

valid_sets=[train_part, eval1],

valid_names=['train', 'valid'],

callbacks=callbacks

)

fse += pd.Series(bst.feature_importance(), features)

feature_select = ['uuid'] + fse.sort_values(ascending=False).index.tolist()[:200]

print('done')

return train[feature_select + ['Label']], test[feature_select]

参数寻优

def params_append(params):

"""

:param params:

:return:

"""

params['objective'] = 'binary'

params['metric'] = 'auc'

params['bagging_seed'] = 2020

return params

def param_hyperopt(train):

"""

:param train:

:return:

"""

label = 'Label'

features = train.columns.tolist()

features.remove('uuid')

features.remove('Label')

params1 = { 'feature_pre_filter':False}

train_data = lgb.Dataset(train[features], train[label], params = params1)

callbacks1 = [lgb.early_stopping(stopping_rounds=20, verbose=False),lgb.log_evaluation(show_stdv=False)]

def hyperopt_objective(params):

"""

:param params:

:return:

"""

params = params_append(params)

print(params)

res = lgb.cv(params, train_data, 1000,

nfold=2,

stratified=False,

shuffle=True,

metrics='auc',code>

seed=2020,

callbacks=callbacks1)

return min(res['valid auc-mean'])

params_space = {

'learning_rate': hp.uniform('learning_rate', 1e-2, 5e-1),

'bagging_fraction': hp.uniform('bagging_fraction', 0.5, 1),

'feature_fraction': hp.uniform('feature_fraction', 0.5, 1),

'num_leaves': hp.choice('num_leaves', list(range(10, 300, 10))),

'reg_alpha': hp.randint('reg_alpha', 0, 10),

'reg_lambda': hp.uniform('reg_lambda', 0, 10),

'bagging_freq': hp.randint('bagging_freq', 1, 10),

'min_child_samples': hp.choice('min_child_samples', list(range(1, 30, 5)))

}

params_best = fmin(

hyperopt_objective,

space=params_space,

algo=tpe.suggest,

max_evals=100,

rstate=np.random.default_rng(2020))

return params_best

模型预测

def train_predict(train, test, params):

"""

:param train:

:param test:

:param params:

:return:

"""

label = 'Label'

features = train.columns.tolist()

features.remove('uuid')

features.remove('Label')

params = params_append(params)

kf = KFold(n_splits=5, random_state=2020, shuffle=True)

prediction_test = 0

cv_score = []

prediction_train = pd.Series()

ESR = 30

NBR = 10000

VBE = 50

callbacks = [lgb.early_stopping(stopping_rounds=30, verbose=50)]

for train_part_index, eval_index in kf.split(train[features], train[label]):

# 模型训练

train_part = lgb.Dataset(train[features].loc[train_part_index],

train[label].loc[train_part_index])

eval = lgb.Dataset(train[features].loc[eval_index],

train[label].loc[eval_index])

bst = lgb.train(params, train_part, num_boost_round=NBR,

valid_sets=[train_part, eval],

valid_names=['train', 'valid'],

callbacks=callbacks)

prediction_test += bst.predict(test[features])

prediction_train = prediction_train._append(pd.Series(bst.predict(train[features].loc[eval_index]),

index=eval_index))

eval_pre = bst.predict(train[features].loc[eval_index]).astype(int)

score = np.sqrt(f1_score(train[label].loc[eval_index].values, eval_pre))

cv_score.append(score)

print(cv_score, sum(cv_score) / 5)

pd.Series(prediction_train.sort_index().values).to_csv("train_lightgbm.csv", index=False)

pd.Series(prediction_test / 5).to_csv("test_lightgbm.csv", index=False)

test['Label'] = prediction_test / 5

test[['uuid', 'Label']].to_csv("submit_lightgbm.csv", index=False)

return

train_select, test_select = feature_select_wrapper(train, test)

best_clf = param_hyperopt(train_select)

joblib.dump(best_clf,"best_clf.pkl")

best_clf = joblib.load('best_clf.pkl')

train_predict(train_select, test_select, best_clf)

xgb

import numpy as np

import pandas as pd

import lightgbm as lgb

import xgboost as xgb

from sklearn.model_selection import KFold

from hyperopt import hp, fmin, tpe

from scipy import sparse

from scipy.sparse import csr_matrix

from sklearn.feature_selection import f_regression,f_classif

from numpy.random import RandomState

from sklearn.metrics import mean_squared_error,f1_score

from bayes_opt import BayesianOptimization

from sklearn.model_selection import KFold

from sklearn.metrics import mean_squared_error,f1_score

def read_data1(debug=True):

features = train.columns.tolist()

features.remove('uuid')

features.remove('Label')

train_x = csr_matrix(train[features].astype(pd.SparseDtype("float64",0)).sparse.to_coo()).tocsr()

test_x = csr_matrix(test[features].astype(pd.SparseDtype("float64",0)).sparse.to_coo()).tocsr()

print("done")

return train_x, test_x

def params_append1(params):

"""

:param params:

:return:

"""

params['objective'] = 'binary:hinge'

params['eval_metric'] = 'auc'

params["min_child_weight"] = int(params["min_child_weight"])

params['max_depth'] = int(params['max_depth'])

return params

def param_beyesian1(train):

"""

:param train:

:return:

"""

train_y = pd.read_excel("dataset-new/traindata-new.xlsx")['Label'].values

train_data = xgb.DMatrix(train, train_y, silent=True)

def xgb_cv(colsample_bytree, subsample, min_child_weight, max_depth,

reg_alpha, eta,

reg_lambda):

"""

:param colsample_bytree:

:param subsample:

:param min_child_weight:

:param max_depth:

:param reg_alpha:

:param eta:

:param reg_lambda:

:return:

"""

params = { 'objective': 'binary:hinge',

'early_stopping_round': 100,

'eval_metric': 'auc'}

params['colsample_bytree'] = max(min(colsample_bytree, 1), 0)

params['subsample'] = max(min(subsample, 1), 0)

params["min_child_weight"] = int(min_child_weight)

params['max_depth'] = int(max_depth)

params['eta'] = float(eta)

params['reg_alpha'] = max(reg_alpha, 0)

params['reg_lambda'] = max(reg_lambda, 0)

print(params)

cv_result = xgb.cv(params, train_data,

num_boost_round=10000,

nfold=5, seed=2,

stratified=False,

shuffle=True,

early_stopping_rounds=30,

verbose_eval=False)

return -min(cv_result['test-auc-mean'])

xgb_bo = BayesianOptimization(

xgb_cv,

{ 'colsample_bytree': (0.5, 1),

'subsample': (0.5, 1),

'min_child_weight': (1, 30),

'max_depth': (5, 12),

'reg_alpha': (0, 5),

'eta':(0.02, 1),

'reg_lambda': (0, 5)}

)

xgb_bo.maximize(init_points=21, n_iter=10) # init_points表示初始点,n_iter代表迭代次数(即采样数)

print(xgb_bo.max['target'], xgb_bo.max['params'])

return xgb_bo.max['params']

def train_predict1(train, test, params):

"""

:param train:

:param test:

:param params:

:return:

"""

train_y = pd.read_excel("dataset-new/traindata-new.xlsx")['Label']

test_data = xgb.DMatrix(test)

params = params_append1(params)

kf = KFold(n_splits=5, random_state=2020, shuffle=True)

prediction_test = 0

cv_score = []

prediction_train = pd.Series()

ESR = 30

NBR = 10000

VBE = 50

for train_part_index, eval_index in kf.split(train, train_y):

# 模型训练

train_part = xgb.DMatrix(train.tocsr()[train_part_index, :],

train_y.loc[train_part_index])

eval2 = xgb.DMatrix(train.tocsr()[eval_index, :],

train_y.loc[eval_index])

bst = xgb.train(params, train_part, NBR, [(train_part, 'train'),

(eval2, 'eval')], verbose_eval=VBE,

maximize=False, early_stopping_rounds=ESR, )

prediction_test += bst.predict(test_data)

eval_pre = bst.predict(eval2)

prediction_train = prediction_train._append(pd.Series(eval_pre, index=eval_index))

score = np.sqrt(f1_score(train_y.loc[eval_index].values, eval_pre))

cv_score.append(score)

print(cv_score, sum(cv_score) / 5)

pd.Series(prediction_train.sort_index().values).to_csv("train_xgboost.csv", index=False)

pd.Series(prediction_test / 5).to_csv("test_xgboost.csv", index=False)

test = pd.read_excel('dataset-new/testdata-new.xlsx')

test['Label'] = prediction_test / 5

test[['uuid', 'Label']].to_csv("submission_xgboost.csv", index=False)

return

train1, test1 = read_data1(debug=False)

best_clf1 = param_beyesian1(train1)

train_predict1(train1, test1, best_clf1)

cat

def cv_model(clf, train_x, train_y, test_x, clf_name, seed=2024):

kf = KFold(n_splits=5, shuffle=True, random_state=seed)

train = np.zeros(train_x.shape[0])

test = np.zeros(test_x.shape[0])

cv_scores = []

for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):

print('************************************ {} {}************************************'.format(str(i+1), str(seed)))

trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]

params = { 'learning_rate': 0.1, 'depth': 6, 'l2_leaf_reg': 10, 'bootstrap_type':'Bernoulli','random_seed':seed,

'od_type': 'Iter', 'od_wait': 100, 'random_seed': 11, 'allow_writing_files': False, 'task_type':'CPU'}

model = clf(iterations=20000, **params, eval_metric='auc')code>

model.fit(trn_x, trn_y, eval_set=(val_x, val_y),

metric_period=100,

cat_features=[],

use_best_model=True,

verbose=1)

val_pred = model.predict_proba(val_x)[:,1]

test_pred = model.predict_proba(test_x)[:,1]

train[valid_index] = val_pred

test += test_pred / kf.n_splits

cv_scores.append(f1_score(val_y, np.where(val_pred>0.5, 1, 0)))

print(cv_scores)

print("%s_score_list:" % clf_name, cv_scores)

print("%s_score_mean:" % clf_name, np.mean(cv_scores))

print("%s_score_std:" % clf_name, np.std(cv_scores))

return train, test

cat_train, cat_test = cv_model(CatBoostClassifier, x_train, y_train, x_test, "cat")

pd.DataFrame(

{

'uuid': test['uuid'],

'Label': np.where(cat_test>0.5, 1, 0)

}

).to_csv('submit_v4.csv', index=None)

未完待续……



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。