ComfyUI插件:ComfyUI layer style 节点(一)

cnblogs 2024-07-31 15:13:00 阅读 92

前言:

学习ComfyUI是一场持久战,而ComfyUI layer style 是一组专为图片设计制作且集成了Photoshop功能的强大节点。该节点几乎将PhotoShop的全部功能迁移到ComfyUI,诸如提供仿照Adobe Photoshop的图层样式、提供调整颜色功能(亮度、饱和度、对比度等)、提供Mask辅助工具、提供图层合成工具和工作流相关的辅助节点、提供图像效果滤镜等。旨在集中工作平台,使我们可以在ComfyUI中实现PhotoShop的一些基础功能。

目录

一、安装方式

二、LayerColor:LUT Apply节点

三、LayerColor:AutoBrightness节点

四、LayerColor:ColorAdapter节点

五、LayerColor:Exposure节点

六、LayerColor:Color of Shadow & HighLight节点

七、LayerColor:Gamma节点

八、LayerColor:Brightness & Contrast节点

九、LayerColor:RGB \ LayerColor:YUV \ LayerColor:LAB \ LayerColor:HSV节点

一、安装方式

方法一:通过ComfyUI Manager安装(推荐)

打开Manager界面

1

2

方法二:使用git clone命令安装

在ComfyUI/custom_nodes目录下输入cmd按回车进入电脑终端

3

在终端输入下面这行代码开始下载

git clone https://github.com/chflame163/ComfyUI_LayerStyle.git

4

二、LayerColor:LUT Apply节点

此节点专注于使用查找表对图像进行颜色调整。查找表是一种预定义的颜色映射表,可以将输入图像的颜色映射到新的颜色空间,从而实现颜色校正或风格化效果。

5

输入:

image → 输入的图片

参数:

LUT → 这里列出了LUT文件夹中可用的.cube文件列表,选中的LUT文件将被应用到图像

color_space → 色彩空间 **普通图片请选择linear, log色彩空间的图片请选择log**

输出:

image → 处理后的图片

示例:

6

注意事项

· LUT格式:确保使用的查找表格式与节点兼容,常见的LUT格式包括 .cube、.png 等。

· 颜色空间匹配:输入图像的颜色空间应与查找表的预期颜色空间匹配,以获得最佳效果。

· 处理性能:应用查找表的处理可能需要较高的计算资源,确保系统性能足够支持处理需求。

· LUT选择:根据具体的图像处理需求选择合适的LUT,以实现预期的颜色调整效果。

通过使用LayerColor: LUT Apply节点,可以在图像处理工作流程中实现高效的颜色调整和风格化处理,提升图像的视觉效果和艺术表现力。

三、LayerColor:AutoBrightness节点

通过对图像的亮度直方图进行分析,该节点可以动态调整图像的亮度,使其更符合视觉上的最佳亮度分布。

7

输入:

image → 输入的图片

mask → 输入遮罩

参数:

strength → 自动调整亮度的强度 **数值越大,越偏向中间值,与原图的差别越大**

saturation → 色彩饱和度 **亮度改变通常会导致色彩饱和度发生变化,可在此适当调整补偿**

输出:

image → 处理后的图片

示例:

8

9

注意事项

· 输入图像质量:确保输入图像的质量良好,避免过度曝光或过暗区域,因为这些问题可能影响自动亮度调整效果。

· 处理性能:自动亮度调整处理可能需要一定的计算资源,确保系统性能足够支持处理需求。

· 结果检查:虽然自动亮度调整通常能提供良好的效果,但对于某些特定场景,手动微调可能仍然是必要的,以确保达到最佳效果。

通过使用LayerColor: AutoBrightness节点,可以在图像处理工作流程中实现高效的亮度自动优化,提升图像的视觉效果和亮度平衡。

四、LayerColor:ColorAdapter节点

此节点专注于通过调整图像的颜色,使其符合预定的颜色方案或风格。

10

输入:

image → 输入的图片

color_ref_image → 输入参考颜色图片

参数:

opacity → 图像调整色调之后的不透明度

输出:

image → 处理后的图片

示例:

11

注意事项

· 颜色方案选择:确保选择适合处理目标的颜色方案,以实现预期的视觉效果。

· 输入图像质量:输入图像的质量会影响颜色调整的效果,确保图像清晰、色彩信息完整。

· 处理性能:颜色调整处理可能需要一定的计算资源,确保系统性能足够支持处理需求。

· 结果检查:虽然颜色调整可以自动应用,但手动微调可能仍然必要,以确保达到最佳效果。

通过使用LayerColor: ColorAdapter节点,可以在图像处理工作流程中实现高效的颜色调整和风格转换,提升图像的视觉效果和一致性。

五、LayerColor:Exposure节点

此节点专注于调整图像的曝光度。通过增加或减少曝光值,可以使图像变得更亮或更暗,以达到预期的视觉效果。

12

输入:

image → 输入的图片

参数:

exposure → 曝光值 **更高的数值表示更亮的曝光,可以为负数**

输出:

image → 处理后的图片

示例:

13

注意事项

· 曝光值配置:根据具体需求配置合适的曝光值,确保调整后的图像亮度符合预期。曝光值为正值时增加曝光,为负值时减少曝光。

· 输入图像质量:输入图像的质量会影响曝光调整的效果,确保图像清晰,曝光问题主要集中在中间亮度区域。

· 处理性能:曝光调整处理可能需要一定的计算资源,确保系统性能足够支持处理需求。

· 结果检查:调整曝光后,检查图像细节和色彩是否保持一致,以防止过度调整导致图像失真或细节丢失。

通过使用LayerColor: Exposure节点,可以在图像处理工作流程中实现高效的曝光调整,提升图像的亮度和整体视觉效果。

六、LayerColor:Color of Shadow & HighLight节点

此节点专注于对图像的阴影和高光区域进行颜色调整。通过单独控制这两个区域的颜色,可以实现更细致的色彩校正和风格化处理。

14

输入:

image → 输入的图片

mask → 遮罩

参数:

shadow_brightness → 暗部的亮度

shadow_saturation → 暗部的色彩饱和度

shadow_hue → 暗部的色相

shadow_level_offset → 暗部取值的偏移量 **数值越大则更多靠近明亮的区域纳入暗部**

shadow_range → 暗部的过渡范围

highlight_brightness → 亮部的亮度

highlight_saturation → 亮部的色彩饱和度

highlight_hue → 亮部的色相

highlight_level_offset → 亮部取值的偏移量 **数值越小则更多靠近阴暗的区域纳入亮部**

highlight_range → 亮部的过渡范围

输出:

image → 处理后的图片

示例:

15

16

注意事项

· 颜色参数配置:根据具体需求配置阴影和高光的颜色参数,确保调整后的图像色彩符合预期。

· 输入图像质量:输入图像的质量会影响颜色调整的效果,确保图像的阴影和高光区域明确且没有严重的颜色偏移。

· 处理性能:颜色调整处理可能需要一定的计算资源,确保系统性能足够支持处理需求。

· 结果检查:调整阴影和高光颜色后,检查图像的整体色彩平衡和视觉效果,确保没有过度调整导致的色彩失真。

通过使用LayerColor: Color of Shadow & HighLight节点,可以在图像处理工作流程中实现高效的阴影和高光颜色调整,提升图像的色彩表现和整体视觉效果。

七、LayerColor:Gamma节点

此节点专注于对图像进行伽马校正。通过调整伽马值,可以改变图像的亮度和对比度,优化图像的整体视觉效果。

17

输入:

image → 输入的图片

参数:

gamma → 设置处理后图像Gamma值

输出:

image → 处理后的图片

示例:

18

注意事项

· 伽马值配置:根据具体需求配置合适的伽马值,确保调整后的图像亮度和对比度符合预期。伽马值大于1会降低亮度,伽马值小于1会增加亮度。

· 输入图像质量:输入图像的质量会影响伽马校正的效果,确保图像中没有过多的噪声和失真。

· 处理性能:伽马校正处理可能需要一定的计算资源,确保系统性能足够支持处理需求。

· 结果检查:调整伽马值后,检查图像的整体视觉效果,确保没有过度调整导致的图像失真或细节丢失。

通过使用LayerColor: Gamma节点,可以在图像处理工作流程中实现高效的伽马校正,优化图像的亮度和对比度,提升图像的整体视觉效果。

八、LayerColor:Brightness & Contrast节点

此节点专注于对图像进行亮度和对比度的调整。通过独立控制这两个参数,可以显著改善图像的视觉效果。

19

输入:

image → 输入的图片

参数:

brightness → 图像的亮度

contrast → 图像的对比度

saturation → 图像的色彩饱和度

输出:

image → 处理后的图片

示例:

20

注意事项

· 亮度和对比度配置:根据具体需求配置合适的亮度和对比度值,确保调整后的图像效果符合预期。亮度值和对比度值通常在-100到100之间。

· 输入图像质量:输入图像的质量会影响亮度和对比度调整的效果,确保图像中没有过多的噪声和失真。

· 处理性能:亮度和对比度调整处理可能需要一定的计算资源,确保系统性能足够支持处理需求。

· 结果检查:调整亮度和对比度后,检查图像的整体视觉效果,确保没有过度调整导致的图像失真或细节丢失。

通过使用LayerColor: Brightness & Contrast节点,可以在图像处理工作流程中实现高效的亮度和对比度调整,优化图像的视觉效果,使图像更加清晰和吸引人。

九、LayerColor:RGB \ LayerColor:YUV \ LayerColor:LAB \ LayerColor:HSV节点

分别调整图像的RGB、YUV、LAB、HSV通道。

21

输入:

image → 输入的图片

参数:

R → R通道 **红色通道**

G → G通道 **绿色通道**

B → B通道 **蓝色通道**

H → H通道 **色调、色相通道**

S → S通道 **饱和度、色彩纯净度通道**

V → V通道 **明度通道**

L → L通道 **亮度通道**

A → A通道 **从绿色到红色的分量通道**

B → B通道 **从蓝色到黄色的分量通道**

Y → Y通道 **强度、亮度通道**

U → U通道 **蓝色色度通道**

V → V通道 **色调、色相通道**

输出:

image → 处理后的图片

示例:

22

23

注意事项

· 参数配置:根据具体需求配置合适的颜色参数,确保调整后的图像效果符合预期。

· 输入图像质量:输入图像的质量会影响颜色调整的效果,确保图像的色彩信息完整。

· 处理性能:颜色调整处理可能需要一定的计算资源,确保系统性能足够支持处理需求。

· 结果检查:调整颜色后,检查图像的整体色彩平衡和视觉效果,确保没有过度调整导致的色彩失真。

· 通过使用这些LayerColor节点,可以在图像处理工作流程中实现高效的颜色调整和优化,提升图像的视觉效果和色彩表现力。

**孜孜以求,方能超越自我。坚持不懈,乃是成功关键。**



声明

本文内容仅代表作者观点,或转载于其他网站,本站不以此文作为商业用途
如有涉及侵权,请联系本站进行删除
转载本站原创文章,请注明来源及作者。